
Text Editors

Handout 1
COP 3363 Spring 2024

2024-01-31

Text Editors

I Files in Unix are usually one of 2 types:
1. Text Files - when opened, they are intelligible for humans, that

is, we can read and understand their contents.
2. Binary Files - These files are usually executable are not in

machine-readable form, so they might not be human readable.
I Special files like directories are intelligible by both humans and

computers due to some special formatting. They are the
exception, not the rule.

I Irrespective of the file type, Unix files can be opened by a text
editor. Text editors are special programs that can work with
files, especially text files.

I For this course, we prefer the vim text editor, which should
come with your shell account.

I We will aslo look at some other text editors like vi and emacs.
I Some other programs, usually mail composers can also be

used for text editing - like nano or pico, These are not really
text editors, as they do not offer the full functionality or
power of vim or emacs.

the cat command

I The cat command is a way to quickly look at the contents of
a file.

I Syntax: cat filename

I This is just to display the contents of the file on the terminal,
and cannot be used to edit the file.

I For file editing, we would have to use one of the many text
editors.

The vim editor

We will be using the vim text editor for the course.
This is a quick way to get started.

I Creating a file: type vim filename

This will create a file if it doesn’t exists and open the empty
file in vim.

I Opening an existing file: Type vim filename

This will open an existing file in vim with all of it’s previous
contents.

I vim has 2 modes:
I command mode: in this mode characters you type are

interpreted as commands
I insert mode: characters you type are inserted as part of the

text
I vim starts in command mode.
I Typing “i” switches to insert mode.
I The ESC key gets you back to command mode.
I vim is case sensitive in command mode. Uppercase and

lowercase commands do different things.
I Commands are not displayed on the screen unless we change

the vimrc settings.

Some basic vim settings

vim settings are written into the vimrc file.

I To open the file, In Your Home Folder open the file by
typing “vim ∼/.vimrc” and Enter.

I In that file, please make sure you have the following exactly:
set expandtab

set tabstop=4

set softtabstop=4

set shiftwidth=4

set textwidth=80

syntax on

set wrap

set laststatus=2

set showmode

set showcmd

set number

set matchpairs+=<:>

I Save and Quit vim.

Starting up vim

I Open a file with vim - vim filename
I If the file doesn’t exist, it will be created.
I If the file exists, vim will open the file and display the current

contents.

I Open a file with the cursor at the beginning of line n:
vim +n filename

I Open a file with the cursor at the last line of the file:
vim + filename

I Recover a file after a system crash: vim -r filename

I The file will be opened in a buffer. This is like a working copy
of the file.

vim - Saving Files

vim commands are like a language - most commands will read like
a shorthand of English.

I To save a file, we need to Write to a buffer
:w
This will overwrite the exiting file.

I To save the file as another file (Save-As)
:w newname
The old file will be closed, unchanged and the new file will
now be open in the buffer.

I To save the current file over an existing file
:w! otherfile
The exisitng file will be deleted.

I Save the current file and open another file for editing:=
:e file
The current file will be saved and closed, and the new file will
be opened in the editor.

Quitting vim

I To quit vim
:q

I Save the current file and quit
:wq

I To quit without saving
:q!

I Save the file if it has changed and quit
:x

Moving the cursor in vim

I Left one character - h

I Right one character - l

I Up one line - k

I Down one line - j

I Left one word - b

I right one word - w

I Start of current sentence - (

I End of current sentence -)

I Start of current paragraph - {
I End of current paragraph - }

More Navigation

I Top of the file - 1G

I Line n of the file - nG

I End of the file: G

I First character of insertion: <Ctrl>W

I Up half a screen - <Ctrl>U

I Down half a screen - <Ctrl>D

I Up one screen - <Ctrl>B

I Down one screen - <Ctrl>F

Entering insert mode

I Insert after cursor - a

I Insert after the last character on the line - A

I Insert before the cursor - i

I Insert before the first character on the line - I

I Open a line below the current line - o

I Open a line above the current line - O

vim - changing and replacing text

I Change or replace current word - cw

I Change or replace k words at the cursor - kcw (eg. 3cw)

I Change or replace current line - cc

I Change or replace n lines around the cursor - ncc (eg. 6cc)

I Replace current character only - r

I Replace current character and those to its right - R

I Another way to replace current character - s

I Change or replace current line (another way) - S

I Switch cases (lower and upper case, like Caps Lock) - ∼

vim - deleting text

I Delete character under the cursor - x

I Delete n characters - nx (eg. 12x)

I Delete character to the left of the cursor - X

I Delete the current word - dw

I Delete k words - kdw (eg. 7dw)

I Delete current line - dd

I Delete from cursor tot he beginning of the line - d0

I Delete from cursor to the end of the line - d$

I Delete n line - ndd (eg. 8dd)

I Delete to the beginning of the paragraph - d{
I Delete to the end of the paragraph - d}
I Delete from cursor to the beginning of the line - :1,.d

I Delete from the cursor to the end of the file - :.,$d

I Delete entire file contents - :1,$d

vim - Searching

I Find the next occurrence of “word” - /word

I find the previous occurrence of “word” - ?word

I Find the next line that starts with “word” - /∧word

I Find the next line that ends with “word” - /word$

I find the next occurrence of “word” or “Word”: /[wW]ord

I Repeat the most recent search in the same direction - n

I Repeat the most recent search in the opposite direction - N

emacs

I emacs is another powerful text editor. It can be used instead
of vim, though it has been getting somewhat heavy, and thus
falling out of favor, of late.

I Using vim or emacs is a matter of preference. In this course,
we will show you a short introduction to emacs.

I If you need a longer user-guide, please contact the instructor.

I You might need to enable tunnelling on your shell account to
access emacs.

Starting emacs

I The command “emacs” will start the “emacs” text editor in
“scratch” mode, with an empty buffer

I “Scratch” mode is a pain to use, will not warn you about
saving your work, and will cause various other grief

I Specifying a file name will have “emacs” open that file (or
start a new file).

I emacs - will open a nameless buffer - (avoid this)

I emacs <filename> - preferred

emacs - basic commands

I Arrow keys are used to navigate around document

I If configured, the mouse can work, but you will learn to work
without it

I The caret symbol (∧) indicates you must press and hold the
control key first, then press the key for the command.

I Undo - ∧x u or ∧- will undo the most recent command (one
of the only places in UNIX where you can undo something)

I Saving - ∧x ∧s saves the buffered text to the currently
specified file

I Quit - ∧x ∧c exits emacs

Some other file related commands

I wc- word count
I Counts the characters, lines, or words in a file
I Syntax: wc [options] filename

I more
I Simple text viewer for large files. Page through with space bar
I Syntax: more filename

I less
I Better text viewer than more. Move with up/down arrows.
I Exit with “Shift - z - z ”
I Syntax: less filename

Running c++ programs on Unix

Follow these steps to compile and run a C++ program on Unix.

1. Write your program using a text editor of your choice.

2. Make sure your file is saved with a “.cpp” extension

3. To compile g++ -c program.cpp

This will compile your file and generate an object file - a file
with a .o extension. If nothing is printed, compilation was
successful. Otherwise, errors will be displayed.

4. To link into an executable g++ -o executableName

program.o

Here, program.o is from the previous step.
If there are errors, they will be displayed. Otherwise, the
executable was built successfully.

5. To run ./executableName

Here, executableName is the file from the previous step.

Running c++ programs on Unix

I There is a shortcut for compiling and linking.

I We can combine the compiling and linking steps into one
g++ -o executableName program.cpp

This will not produce the intermediary object file, but the rest
of the steps are the same.

I Shortcut to the Shortcut: We can skip the executable name.
g++ program.cpp

This will produce an executable under the default name
a.out.
If there was any precious a.out file in the same directory, it
would be deleted.

	Text Editors
	cat
	vim
	vim commands
	emacs
	some Other commands
	Compiling and Running C++ programs

