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Text Editors

I Files in Unix are usually one of 2 types:
1. Text Files - when opened, they are intelligible for humans, that

is, we can read and understand their contents.
2. Binary Files - These files are usually executable are not in

machine-readable form, so they might not be human readable.
I Special files like directories are intelligible by both humans and

computers due to some special formatting. They are the
exception, not the rule.

I Irrespective of the file type, Unix files can be opened by a text
editor. Text editors are special programs that can work with
files, especially text files.

I For this course, we prefer the vim text editor, which should
come with your shell account.

I We will aslo look at some other text editors like vi and emacs.
I Some other programs, usually mail composers can also be

used for text editing - like nano or pico, These are not really
text editors, as they do not offer the full functionality or
power of vim or emacs.



the cat command

I The cat command is a way to quickly look at the contents of
a file.

I Syntax: cat filename

I This is just to display the contents of the file on the terminal,
and cannot be used to edit the file.

I For file editing, we would have to use one of the many text
editors.



The vim editor

We will be using the vim text editor for the course.
This is a quick way to get started.

I Creating a file: type vim filename

This will create a file if it doesn’t exists and open the empty
file in vim.

I Opening an existing file: Type vim filename

This will open an existing file in vim with all of it’s previous
contents.

I vim has 2 modes:
I command mode: in this mode characters you type are

interpreted as commands
I insert mode: characters you type are inserted as part of the

text
I vim starts in command mode.
I Typing “i” switches to insert mode.
I The ESC key gets you back to command mode.
I vim is case sensitive in command mode. Uppercase and

lowercase commands do different things.
I Commands are not displayed on the screen unless we change

the vimrc settings.



Some basic vim settings

vim settings are written into the vimrc file.

I To open the file, In Your Home Folder open the file by
typing “vim ∼/.vimrc” and Enter.

I In that file, please make sure you have the following exactly:
set expandtab

set tabstop=4

set softtabstop=4

set shiftwidth=4

set textwidth=80

syntax on

set wrap

set laststatus=2

set showmode

set showcmd

set number

set matchpairs+=<:>

I Save and Quit vim.



Starting up vim

I Open a file with vim - vim filename
I If the file doesn’t exist, it will be created.
I If the file exists, vim will open the file and display the current

contents.

I Open a file with the cursor at the beginning of line n:
vim +n filename

I Open a file with the cursor at the last line of the file:
vim + filename

I Recover a file after a system crash: vim -r filename

I The file will be opened in a buffer. This is like a working copy
of the file.



vim - Saving Files

vim commands are like a language - most commands will read like
a shorthand of English.

I To save a file, we need to Write to a buffer
:w
This will overwrite the exiting file.

I To save the file as another file (Save-As)
:w newname
The old file will be closed, unchanged and the new file will
now be open in the buffer.

I To save the current file over an existing file
:w! otherfile
The exisitng file will be deleted.

I Save the current file and open another file for editing:=
:e file
The current file will be saved and closed, and the new file will
be opened in the editor.



Quitting vim

I To quit vim
:q

I Save the current file and quit
:wq

I To quit without saving
:q!

I Save the file if it has changed and quit
:x



Moving the cursor in vim

I Left one character - h

I Right one character - l

I Up one line - k

I Down one line - j

I Left one word - b

I right one word - w

I Start of current sentence - (

I End of current sentence - )

I Start of current paragraph - {
I End of current paragraph - }



More Navigation

I Top of the file - 1G

I Line n of the file - nG

I End of the file: G

I First character of insertion: <Ctrl>W

I Up half a screen - <Ctrl>U

I Down half a screen - <Ctrl>D

I Up one screen - <Ctrl>B

I Down one screen - <Ctrl>F



Entering insert mode

I Insert after cursor - a

I Insert after the last character on the line - A

I Insert before the cursor - i

I Insert before the first character on the line - I

I Open a line below the current line - o

I Open a line above the current line - O



vim - changing and replacing text

I Change or replace current word - cw

I Change or replace k words at the cursor - kcw (eg. 3cw)

I Change or replace current line - cc

I Change or replace n lines around the cursor - ncc (eg. 6cc)

I Replace current character only - r

I Replace current character and those to its right - R

I Another way to replace current character - s

I Change or replace current line (another way) - S

I Switch cases (lower and upper case, like Caps Lock) - ∼



vim - deleting text

I Delete character under the cursor - x

I Delete n characters - nx (eg. 12x)

I Delete character to the left of the cursor - X

I Delete the current word - dw

I Delete k words - kdw (eg. 7dw)

I Delete current line - dd

I Delete from cursor tot he beginning of the line - d0

I Delete from cursor to the end of the line - d$

I Delete n line - ndd (eg. 8dd)

I Delete to the beginning of the paragraph - d{
I Delete to the end of the paragraph - d}
I Delete from cursor to the beginning of the line - :1,.d

I Delete from the cursor to the end of the file - :.,$d

I Delete entire file contents - :1,$d



vim - Searching

I Find the next occurrence of “word” - /word

I find the previous occurrence of “word” - ?word

I Find the next line that starts with “word” - /∧word

I Find the next line that ends with “word” - /word$

I find the next occurrence of “word” or “Word”: /[wW]ord

I Repeat the most recent search in the same direction - n

I Repeat the most recent search in the opposite direction - N



emacs

I emacs is another powerful text editor. It can be used instead
of vim, though it has been getting somewhat heavy, and thus
falling out of favor, of late.

I Using vim or emacs is a matter of preference. In this course,
we will show you a short introduction to emacs.

I If you need a longer user-guide, please contact the instructor.

I You might need to enable tunnelling on your shell account to
access emacs.



Starting emacs

I The command “emacs” will start the “emacs” text editor in
“scratch” mode, with an empty buffer

I “Scratch” mode is a pain to use, will not warn you about
saving your work, and will cause various other grief

I Specifying a file name will have “emacs” open that file (or
start a new file).

I emacs - will open a nameless buffer - (avoid this)

I emacs <filename> - preferred



emacs - basic commands

I Arrow keys are used to navigate around document

I If configured, the mouse can work, but you will learn to work
without it

I The caret symbol (∧) indicates you must press and hold the
control key first, then press the key for the command.

I Undo - ∧x u or ∧- will undo the most recent command (one
of the only places in UNIX where you can undo something)

I Saving - ∧x ∧s saves the buffered text to the currently
specified file

I Quit - ∧x ∧c exits emacs



Some other file related commands

I wc- word count
I Counts the characters, lines, or words in a file
I Syntax: wc [options] filename

I more
I Simple text viewer for large files. Page through with space bar
I Syntax: more filename

I less
I Better text viewer than more. Move with up/down arrows.
I Exit with “Shift - z - z ”
I Syntax: less filename



Running c++ programs on Unix

Follow these steps to compile and run a C++ program on Unix.

1. Write your program using a text editor of your choice.

2. Make sure your file is saved with a “.cpp” extension

3. To compile g++ -c program.cpp

This will compile your file and generate an object file - a file
with a .o extension. If nothing is printed, compilation was
successful. Otherwise, errors will be displayed.

4. To link into an executable g++ -o executableName

program.o

Here, program.o is from the previous step.
If there are errors, they will be displayed. Otherwise, the
executable was built successfully.

5. To run ./executableName

Here, executableName is the file from the previous step.



Running c++ programs on Unix

I There is a shortcut for compiling and linking.

I We can combine the compiling and linking steps into one
g++ -o executableName program.cpp

This will not produce the intermediary object file, but the rest
of the steps are the same.

I Shortcut to the Shortcut: We can skip the executable name.
g++ program.cpp

This will produce an executable under the default name
a.out.
If there was any precious a.out file in the same directory, it
would be deleted.
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