
Lecture 9
Functions

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/26

mailto:shiboli@cs.fsu.edu


Functions

▶ A function is a reusable portion of a program, sometimes
called procedure or subroutine.
▶ Like a mini-program (or subprogram) in its own right
▶ Can take in special inputs (arguments)
▶ Can produce an answer value (return value)
▶ Similar to the idea of a function in mathematics

COP 3363: Introduction to Programming in C++ Fall 2024 2/26



Functions

▶ With functions, there are 2 major points of view.
▶ Builder of the function – responsible for creating the

declaration and the definition of the function (i.e., how it
works)

▶ Caller – somebody (i.e. some portion of code) that uses the
function to perform a task

COP 3363: Introduction to Programming in C++ Fall 2024 3/26



Why write and use functions?

▶ Divide-and-conquer
▶ Can breaking up programs and algorithms into smaller, more

manageable pieces
▶ This makes for easier writing, testing, and debugging
▶ Also easier to break up the work for team development

▶ Reusability
▶ Functions can be called to do their tasks anywhere in a

program, as many times as needed
▶ Avoids repetition of code in a program
▶ Functions can be placed into libraries to be used by more than

one “program”

COP 3363: Introduction to Programming in C++ Fall 2024 4/26



Using Functions

▶ The user of a function is the caller.

▶ Use a function by making calls to the function with real
data,and getting back real answers.

▶ Consider a typical function from mathematics:

f (x) = 2x + 5

COP 3363: Introduction to Programming in C++ Fall 2024 5/26



Using Functions

f (x) = 2x + 5

▶ In mathematics, the symbol ‘x’ is a placeholder, and when
yourun the function for a value, you “plug in” the value in
place of x. Consider the following equation, which we then
simplify:

y = f(10) // must evaluate f(10)
y = 2 * 10 + 5 y = 20 + 5/ / plug in 10 for x
y = 25 // so f(10) results in 25

▶ In programming, we would say that the call f(10) returns the
value 25.

COP 3363: Introduction to Programming in C++ Fall 2024 6/26



Using Functions

▶ C++ functions work in largely the same way. General format of
a C++ function call:

functionName(argumentList)

▶ The argumentList is a comma-separated list of
arguments(data being sent into the method).

▶ Use the call anywhere that the returned answer would
makesense.

COP 3363: Introduction to Programming in C++ Fall 2024 7/26



Using Functions

▶ In keeping with the “declare before use” policy, a function call
can be made ONLY if a declaration (or definition) of the
function has been seen by the compiler first.
▶ This can be done by placing a declaration above the call
▶ This is handled in libraries by including the header file for the

library with a #include directive

COP 3363: Introduction to Programming in C++ Fall 2024 8/26



Using Functions

▶ There is a pre-defined math function “sqrt”, which takes one
input value (of type double) and returns its square root.
Sample calls:

double x = 9.0, y = 16.0, z;
z = sqrt(36.0); //returns 6.0 (stored in z)
z = sqrt(x); //returns 3.0 (stored in z)
z = sqrt(x + y); //returns 5.0(stored in z)
cout<< sqrt(100.0);// prints the returned 10.0
cout<< sqrt(49); //due to automatic type

conversion rules we can send an int where
a double is expected. This call returns
7.0

COP 3363: Introduction to Programming in C++ Fall 2024 9/26



Using Functions

▶
cout<< sqrt(sqrt(625.0)); // function calls can

be nested. Inner function returns first, and
its return value is passed to the outer
function. This line returns 5.0

COP 3363: Introduction to Programming in C++ Fall 2024 10/26



Predefined Functions

▶ There are many predefined functions available for use in
various libraries.
▶ These typically include standard libraries from both C and C++

▶ These may also include system-specific and
compiler-specificlibraries depending on your compiler

▶ Typically, C libraries will have names that are prefixed with the
letter ‘c’. (cmath, cstdlib, cstring)

COP 3363: Introduction to Programming in C++ Fall 2024 11/26



Predefined Functions

▶ To make such functions available to a program, the library
must be included with the #include directive at the top of
your file. Examples:

#include <iostream> // common I/O routines
#include <cmath> // common math functions
#include <cstdlib> // common general C functions

COP 3363: Introduction to Programming in C++ Fall 2024 12/26



Building Functions

return_type function_name(arg1, arg2,...)

▶ The builder of a function (a programmer) is responsible forthe
declaration (also known as prototype) and the definition.

▶ A function declaration, or prototype, specifies three things:
▶ the function name – usual naming rules for user-created

identifiers
▶ the return type – the type of the value that the function

willreturn (i.e. the answer sent back)

COP 3363: Introduction to Programming in C++ Fall 2024 13/26



Building Functions

return_type function_name(arg1, arg2,...)

▶ A function declaration, or prototype, specifies three things:
▶ the parameter list – a comma separated list of parameters that

the function expects to receive (as arguments)
▶ every parameter slot must list a type (this is the type of

datato be sent in when the function is called)

▶ parameter names can be listed (but optional on a declaration)

▶ parameters are listed in the order they are expected

COP 3363: Introduction to Programming in C++ Fall 2024 14/26



Examples

// Good function prototypes
int Sum(int x, int y, int z);

double Average (double a, double b, double c);

bool InOrder(int x, int y, int z);

int DoTask(double a, char letter, int num);

double Average (double, double, double);
// Note: no parameter names here okay on a

declaration

COP 3363: Introduction to Programming in C++ Fall 2024 15/26



Examples

// BAD function prototypes (illegal)
double Average(double x, y, z); // Each parameter

must list a type

PrintData(int x); // missing return type i

nt Calculate(int) // missing semicolon

int double Task(int x); // only one return type
allowed!

COP 3363: Introduction to Programming in C++ Fall 2024 16/26



Defining a Function

▶ a function definition repeats the declaration as a header
(without the semi-colon), and then adds to it a function body
enclosed in a block
▶ The function body is actual code that is implemented when

the function is called.
▶ In a definition, the parameter list must include the parameter

names, since they will be used in the function body. These are
the formal parameters.

COP 3363: Introduction to Programming in C++ Fall 2024 17/26



Defining Examples

int Sum(int x, int y, int z) // add the three
parameters and return the sum

{
int answer;
answer = x + y + z;
return answer;

}

double Average (double a, double b, double c) // add
the parameters, divide by 3, return the result

{
return (a + b + c) / 3.0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 18/26



Defining Examples

More than one return statement may appear in a function
definition, but the first one to execute will force immediate exit
from the function.

/* answers yes/no to the question "are these
parameters in order, smallest to largest?"

Returns true for yes, false for no. */
bool InOrder(int x, int y, int z)
{

if (x <= y && y <= z)
return true;

else
return false;

}

COP 3363: Introduction to Programming in C++ Fall 2024 19/26



Scope Identifiers

▶ The scope of an identifier (i.e. variable) is the portion of
thecode where it is valid and usable

▶ A global variable is declared outside of any blocks, usually at
the top of a file, and is usable anywhere in the file from its
point of declaration.
▶ “When in doubt, make it global” == BAD

PROGRAMMINGPRACTICE
▶ Best to avoid global variables (except for

constants,enumerations. Sometimes)
▶ Function names usually global. (prototypes placed at the top

of a file, outside any blocks)

COP 3363: Introduction to Programming in C++ Fall 2024 20/26



Scope Identifiers

▶ A variable declared within a block (i.e. a compound
statement) of normal executable code has scope only within
that block.
▶ Includes function bodies
▶ Includes other blocks nested inside functions (like

loops,if-statements, etc)
▶ Does not include some special uses of block notation to be

seen later (like the declaration of a class – which will have a
separate scope issue)

COP 3363: Introduction to Programming in C++ Fall 2024 21/26



Scope Identifiers

▶ Variables declared in the formal parameter list of a function
definition have scope only within that function.
▶ These are considered local variables to the function. Variables

declared completely inside the function body (i.e. the block)
are also local variables

COP 3363: Introduction to Programming in C++ Fall 2024 22/26



void functions and empty parameter lists

▶ Parameter lists
▶ Mathematical functions must have 1 or more parameters
▶ C++ functions can have 0 or more parameters
▶ To define a function with no parameters, leave the

parinthesesempty
▶ Same goes for the call. (But parintheses must be present, to

identify it as a function call)

COP 3363: Introduction to Programming in C++ Fall 2024 23/26



void functions and empty parameter lists

▶ Return Types
▶ A mathematical function must return exactly 1 answer
▶ A C++ function can return 0 or 1 return value
▶ To declare a function that returns no answer, use void as

thereturn type
▶ A void function can still use the keyword return inside, but

notwith an expression (only by itself). One might do this to
force early exit from a function.

▶ To CALL a void function, call it by itself – do NOT put it in
the middle of any other statement or expression

COP 3363: Introduction to Programming in C++ Fall 2024 24/26



Functions and the compiler

▶ The reason for the declare-before-use rule is that the compiler
has to check all function CALLS to make sure they match the
expectations.
▶ the “expectations” are all listed in a function declaration
▶ function name must match
▶ arguments passed in a call must match expected types

andorder
▶ returned value must not be used illegally

COP 3363: Introduction to Programming in C++ Fall 2024 25/26



Functions and the compiler

▶ Decisions about parameters and returns are based on
type-checking.
▶ legal automatic type conversions apply when passing

arguments into a funcion, and when checking what is returned
against the expected return type

COP 3363: Introduction to Programming in C++ Fall 2024 26/26


	title

