
Lecture 8
Repetition: Loops!

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/27

mailto:shiboli@cs.fsu.edu


Repetition Statements

▶ Repetition statements are called loops, and are used to repeat
the same code mulitple times in succession.

▶ The number of repetitions is based on criteria defined in
theloop structure, usually a true/false expression

▶ The three loop structures in C++ are:
▶ while

▶ do-while

▶ for

▶ Three types of loops are not actually needed, but having the
different forms is convenient

COP 3363: Introduction to Programming in C++ Fall 2024 2/27



while and do-while loops

▶ Format of while loop:

while (expression)
statement

▶ Format of do/while loop:

do
statement

while (expression);

▶ The expression in these formats is handled the same as in the
if/else statements discussed previously (0 means false,
anything else means true)

▶ The “statement” portion is also as in if/else. It can be a
single statement or a compound statement (a block {} ).

COP 3363: Introduction to Programming in C++ Fall 2024 3/27



while and do-while loops

▶ We could also write the formats as follows (illustrating more
visually what they look like when a compound statement
makes up the loop “body”):

while (boolean expression)
{

statement1;
statement2;
// ...
statementN;

}

COP 3363: Introduction to Programming in C++ Fall 2024 4/27



while and do-while loops

▶ The same can be done for the do-while loop:

do
{

statement1;
statement2;
// ...
statementN;

} while (boolean expression)

COP 3363: Introduction to Programming in C++ Fall 2024 5/27



How they work

▶ The expression is a test condition that is evaluated to decide
whether the loop should repeat or not.
▶ true means run the loop body again.
▶ false means quit.

▶ The while and do/while loops both follow the same basic
flowchart – the only exception is that:
▶ In a while loop, the expression is tested first
▶ In a do/while loop, the loop “body” is executed first

COP 3363: Introduction to Programming in C++ Fall 2024 6/27



Examples

▶ Both of these examples add all the numbers from 1 through
50.

// while loop example
int i = 1,
int sum = 0;
while (i <= 50) // Q: # loops? # eval

expression?
{

sum += i; // means: sum = sum + i
i++; // means: i = i + 1

}
cout <<"Sum of numbers from 1 through 50 is"

<<sum <<endl;

COP 3363: Introduction to Programming in C++ Fall 2024 7/27



Examples

▶ Both of these examples add all the numbers from 1 through
50.

// while loop example
int i = 1,
int sum = 0;
while (i <= 50) //loop runs 50 times,

condition checked 51 times
{

sum += i; // means: sum = sum + i
i++; // means: i = i + 1

}
cout <<"Sum of numbers from 1 through 50 is"

<<sum <<endl;

COP 3363: Introduction to Programming in C++ Fall 2024 8/27



Examples

▶ Both of these examples add all the numbers from 1 through
50.

// while loop example
int i = 1, sum = 0;
do
{

sum += i; // means: sum = sum + i
i++; // means: i = i + 1

} while (i <= 50) // Q: # loops? # eval
expression?

cout <<"Sum of numbers from 1 through 50 is"
<<sum <<endl;

COP 3363: Introduction to Programming in C++ Fall 2024 9/27



Examples

▶ Both of these examples add all the numbers from 1 through
50.

// while loop example
int i = 1, sum = 0;
do
{

sum += i; // means: sum = sum + i
i++; // means: i = i + 1

} while (i <= 50) //loop runs 50 times,
condition checked 50 times

cout <<"Sum of numbers from 1 through 50 is"
<<sum <<endl;

COP 3363: Introduction to Programming in C++ Fall 2024 10/27



The for loop

▶ The for loop is most convenient with counting loops – i.e.,
loops that are based on a counting variable, usually a
known number of iterations

▶ Syntax of for loop

for (initialCondition; boolean Expression;
iterativeStatement)

COP 3363: Introduction to Programming in C++ Fall 2024 11/27



The for loop

▶ Remember that the statement can be a single statement or a
block, so an alternate format might be:

for (initialCondition; boolean Expression;
iterativeStatement)

{
statement1;
statement2;
// ...
statementN;

}

COP 3363: Introduction to Programming in C++ Fall 2024 12/27



How it works

▶ The initialCondition runs once, at the start of the loop
▶ The testExpression is checked at very iter. (This is just like

the expression in a while loop). If it’s false, quit. If it’s true,
then:
▶ Run the loop body
▶ Run the iterativeStatement
▶ Go back to the testExpression step and repeat

COP 3363: Introduction to Programming in C++ Fall 2024 13/27



How it works

▶ Example

// Q: # of loops? # condition checked? #
increment?

int i, sum = 0;
for (i = 1; i <= 50; i++)
{

sum += i;
}
cout <<"Sum of numbers from 1 through 50 is "

<< sum << endl;

COP 3363: Introduction to Programming in C++ Fall 2024 14/27



How it works

▶ Example

// loop runs 50 times, condition checked 51
times

int i, sum = 0;
for (i = 1; i <= 50; i++)
{

sum += i;
}
cout <<"Sum of numbers from 1 through 50 is "

<< sum << endl;

COP 3363: Introduction to Programming in C++ Fall 2024 15/27



Question

How many times “Hello World” are printed?

for (int i = 0; i <10; i++)
cout << "Hello" << endl ;

for (int i = 1; i <10; i++)
cout << "Hello" << endl ;

for (int i = 0; i <10; ++i)
cout << "Hello" << endl ;

COP 3363: Introduction to Programming in C++ Fall 2024 16/27



Question

How many times “Hello World” are printed?

for (int i = 0; i <10; i++)
cout << "Hello" << endl ; // 10 times

for (int i = 1; i <10; i++)
cout << "Hello" << endl ; // 9 times

for (int i = 0; i <10; ++i)
cout << "Hello" << endl ; // 10 times

COP 3363: Introduction to Programming in C++ Fall 2024 17/27



More for loop

▶ For loops also do not have to count one-by-one, or even
upward. Examples:

for (i = 100; i >0; i--)
for (c = 3; c <= 30; c+=4)

The first example gives a loop header that starts counting at 100
and decrements its control variable, counting down to 1 (and
quitting when i reaches 0).

The second example shows a loop that begins counting at 3 and
counts by 4’s (the second value of c will be 7, etc).

COP 3363: Introduction to Programming in C++ Fall 2024 18/27



More for loop

▶ There could be multiple statements of initialCondition,
testExpression, iterativeStatement

int a=0;
for (int i=0, j=10; i<5; ++i, j-=2, a+=j) {

// loop body
}
// a = ?

COP 3363: Introduction to Programming in C++ Fall 2024 19/27



More for loop

▶ Loops can also be nested. This prints a rectangle

for (int i = 0; i <10; i++){
for (int j = 0; j <15; j++)
{

cout <<"*";
}
cout <<endl;

}

COP 3363: Introduction to Programming in C++ Fall 2024 20/27



Some notes on the for loop

▶ It should be noted that if the control variable is declared
inside the for header, it only has scope through the for loop’s
execution.

Once the loop is finished, the variable is out of scope:

for (int counter = 0; counter <10; counter++){
// loop body

}
cout << counter; // illegal. counter out of

scope

COP 3363: Introduction to Programming in C++ Fall 2024 21/27



Some notes on the for loop

▶ This can be avoided by declaring the control variable before
the loop itself.

int counter; // declaration of control
variable

for (counter = 0; counter <10; counter++)
{

// loop body
}
cout <<counter; // OK. counter is in scope

COP 3363: Introduction to Programming in C++ Fall 2024 22/27



break and continue

▶ These statements can be used to alter the flow of control in
oops, although they are not specifically needed. (Any loop can
be made to exit by writing an appropriate test expression).

▶ break: This causes immediate exit from any loop (as well
asfrom switch blocks).

▶ continues: When used in a loop, this statement causes the
current loop iteration to end, but the loop then moves on to
the next step.
▶ In a while or do-while loop, the rest of the loop body is

skipped, and execution moves on to the test condition.
▶ In a for loop, the rest of the loop body is skipped, and

execution moves on to the iterative statement.

COP 3363: Introduction to Programming in C++ Fall 2024 23/27



Examples

int i = 0;
while true
{

if (i < 100)
cout << i;

else
break;

i++;
}

for (int i = 0; i<100; i++) {
cout << i;

}

COP 3363: Introduction to Programming in C++ Fall 2024 24/27



Examples

for (int i = 0; i<100; i++) {
if (i%2 == 0)

cout << i
else

coninue
}

COP 3363: Introduction to Programming in C++ Fall 2024 25/27



Examples

for (int i = 0; i<100; i++) {
if (i%2 == 0)
cout << i
else
coninue

}

for (int i = 0; i<100; i+=2) {
cout << i;

}

COP 3363: Introduction to Programming in C++ Fall 2024 26/27



Programming Exerceise

Task: Print the edges of a rectangle with *

▶ Ask the height and width from the user

▶ Should check user’s inputs, make sure they are positive (safely
addume integer) numbers

▶ Example

COP 3363: Introduction to Programming in C++ Fall 2024 27/27


	title

