
Lecture 7
Control Structures

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/35

mailto:shiboli@cs.fsu.edu

Control Flow

Control flow refers to the specification of the order in which the
individual statements, instructions or function calls of an
imperative program are executed or evaluated

COP 3363: Introduction to Programming in C++ Fall 2024 2/35

Types of Control Flow

Flow of control through any given function is implemented with
three basic types of control structures:

▶ Sequential: Default mode. Statements are executed line by
line.

▶ Selection: Used for decisions, branching – choosing between
2 or more alternative paths.
▶ if

▶ if-else

▶ switch

▶ other conditional states

COP 3363: Introduction to Programming in C++ Fall 2024 3/35

Types of Control Flow

▶ Repetition: Used for looping – repeating a piece of code
multiple times in a row.
▶ while

▶ do-while

▶ for

▶ The function construct, itself, forms another way to affect
flow of control through a whole program. This will be
discussed later in the course.

COP 3363: Introduction to Programming in C++ Fall 2024 4/35

True and False

▶ Selection and repetition statements typically involve decision
steps. These steps rely on conditions that are evaluated as
true or false

▶ C++ has a boolean data type (called bool) that has
valuestrue and false. Improves readability.

▶ Most functions that answer a yes/no question (or a true/false
situation) will return a boolean answer (or in the case of
user-defined functions, they should be coded that way)

COP 3363: Introduction to Programming in C++ Fall 2024 5/35

True and False

▶ Important: ANY C++ expression that evaluates to a value
(i.e. any R-value) can be interpreted as a true/false condition.
The rule is:
▶ If an expression evaluates to 0, its truth value is false
▶ If an expression evaluates to non-zero, its truth value is true

COP 3363: Introduction to Programming in C++ Fall 2024 6/35

Relational Operators

Relational Operators are use for comparison.

The comparison operators in C++ work much like the symbols we
use in mathematics. Each of these operators returns a Boolean
value: a true or a false.

x == y // x is equal to y
x != y // x is not equal to y
x <y // x is less than y
x <= y // x is less than or equal to y
x >y // x is greater than y
x >= y // x is greater than or equal to y

COP 3363: Introduction to Programming in C++ Fall 2024 7/35

Logical Operators

C++ has operators for combining expressions. Each of these
operators returns a boolean value: a true or a false.

!x // the NOT operator (negation) true if x is false
x && y // the AND operator true if both x and y are

true
x || y // the OR operator true if either x or y or

both are true

These operators will be commonly used as test expressions in
selection statements or repetition statements (loops).

COP 3363: Introduction to Programming in C++ Fall 2024 8/35

Examples of Compound Logic Expressions

(x >0 && y >0 && z >0) // all three of (x, y, z) are
positive

(x <0 ||y <0 ||z <0) // at least one of the three
variables is negative

(numStudents >= 20 && !(classAvg <70)) // there are
at least 20 students and the class average is at
least 70

(numStudents >= 20 && classAvg >= 70) // means the
same thing as the previous expression

COP 3363: Introduction to Programming in C++ Fall 2024 9/35

Short Circuit Evaluation

▶ The && (AND) and || (OR) operators also have a feature
known as short-circuit evaluation.

▶ In the Boolean AND expression (X && Y), if X is false, there is
no need to evaluate Y (so the evaluation stops).

x y x&&y
False False False
False True False
True False False
True True True

Table: Truth table for AND operator

COP 3363: Introduction to Programming in C++ Fall 2024 10/35

Short Circuit Evaluation

▶ Example

(d != 0 && n / d >0)

▶ Notice that the short circuit is crucial in this one. If d is 0,
then evaluating (n / d) would result in division by 0 (illegal).
But the ”short-circuit” prevents it in this case. If d is 0, the
first operand (d != 0) is false. So the whole && is false.

COP 3363: Introduction to Programming in C++ Fall 2024 11/35

Short Circuit Evaluation

▶ Similarly, for the Boolean OR operation (X || Y), if the first
part is true, the whole thing is true, so there is no need to
continue the evaluation. The computer only evaluates as
much of the expression as it needs. This can allow the
programmer to write faster executing code.

x y x ||y
False False False
False True True
True False True
True True True

Table: Truth table for OR operator

COP 3363: Introduction to Programming in C++ Fall 2024 12/35

The if/else Selection Statement

▶ The most common selection statement is the if/else
statement. Basic syntax:

if (expression)
{

statement(s)
}
else
{

statement(s)
}

▶ The else clause is optional.

▶ If there is only one statement in the if/else clause, the {}
is also optional

COP 3363: Introduction to Programming in C++ Fall 2024 13/35

The if/else Selection Statement

The expression part can be any expression that evaluates a
value(an R-value), and it must be enclosed in parentheses ().

▶ The best use is to make the expression a Boolean
expression,which is an operation that evaluates to true or false

▶ For other expressions (like (x + y), for instance):
▶ an expression that evaluates to 0 is considered false
▶ an expression that evaluates to anything else (non-zero) is

considered true

COP 3363: Introduction to Programming in C++ Fall 2024 14/35

The if/else Selection Statement

▶ The statement parts are the “bodies” of the if-clause and the
else-clause. The statement after the if or else clause must be
either:
▶ an empty statement
▶ a statement
▶ a block

▶ Appropriate indentation of the bodies of the if-clause and
else-clause is a very good idea (for human readability), but
irrelevant to the compiler

COP 3363: Introduction to Programming in C++ Fall 2024 15/35

Examples

▶
if (grade >= 68) {

cout <<"Passing";
}

If grade is below 68, we just move on.

COP 3363: Introduction to Programming in C++ Fall 2024 16/35

Examples

▶
int x = 4;
if (x == 0) {

cout <<"Nothing here";
} else {

cout <<"There is a value";
}

COP 3363: Introduction to Programming in C++ Fall 2024 17/35

Examples

▶
if (y != 4)
{

cout <<"Wrong number";
y = y * 2;
counter++;

}
else
{

cout << "That is it!";
success = true;

}

Multiple statements are to be executed as a result of the
condition being true or false. In this case, notice the
compound statement to delineate the bodies of the if and else
clauses.

COP 3363: Introduction to Programming in C++ Fall 2024 18/35

Question

▶ What is output when int val = 8

if (val < 5)
cout <<"True";

else
cout <<"False";
cout <<"Too bad!";

COP 3363: Introduction to Programming in C++ Fall 2024 19/35

Question

▶ What is output when int val = 4

if (val < 5)
cout <<"True";

else
cout <<"False";
cout <<"Too bad!";

COP 3363: Introduction to Programming in C++ Fall 2024 20/35

Careful about the Scopt of Clause

▶ Be careful with ifs and elses. If you don’t use , you may think
that you’ve included more under an if condition than you
really have.

▶ Indentation is only for people! It improves readability, but
means nothing to the compiler.

COP 3363: Introduction to Programming in C++ Fall 2024 21/35

Question

What is the output?

int a = 1+2;
int b = 3;

if (a==b){
cout << "a is euqal to b" << endl;

}
else
{

cout << "a is not equal to b" << endl;
}

COP 3363: Introduction to Programming in C++ Fall 2024 22/35

Question

What is the output?

double a = 0.1 + 0.2;
double b = 0.3;

if (a==b)
{

cout << "a is euqal to b" << endl;
}
else
{

cout << "a is not equal to b" << endl;
}

COP 3363: Introduction to Programming in C++ Fall 2024 23/35

Question

It is not safe to directly compare if two double vars are equal or
not.

double a = 0.1 + 0.2;
double b = 0.3;

cout << a;
// 0.30000000000000004441
cout << b;
// 0.29999999999999998890

COP 3363: Introduction to Programming in C++ Fall 2024 24/35

Safe Comparison of Doubles

double a = 0.1 + 0.2;
double b = 0.3;
double tol = 1e-9; // comparison tolerance

// saft comparison
if (fabs(a-b) < tol)

cout << "a is equal to b";
else

cout << "a is not equal to b"

COP 3363: Introduction to Programming in C++ Fall 2024 25/35

Question

int a = 2147483647; // a = 2ˆ31 - 1
int b = a + 1

if (a<b)
cout << "a<b"

else
cout << "a>=b"

COP 3363: Introduction to Programming in C++ Fall 2024 26/35

Comparing Integers with Overflow or Underflow

int a = 2147483647; // a = 2ˆ31 - 1
int b = a + 1

if (a<b)
cout << "a<b"

else
cout << "a>=b"

// answer: a >= b
// a = 2147483647
// b = -2147483648

COP 3363: Introduction to Programming in C++ Fall 2024 27/35

Other Common Errors

What’s wrong with these if-statements? Which ones are syntax
errors and which ones are logic errors?

if (x == 1 || 2 || 3)
cout <<"x is in the range 1-3";

if (x >5) && (y <10)
cout <<"Yahoo!";

if (response != ’Y’ || response != ’N’)
cout <<"You must type Y or N (for yes or no)";

COP 3363: Introduction to Programming in C++ Fall 2024 28/35

The Swith Statement

A switch statement is often convenient for occasions in which there
are multiple cases to choose from. The syntax format is:

switch (expression)
{

case constant:
statements

case constant:
statements

...(as many case labels as needed)

default: // optional label
statements

}

COP 3363: Introduction to Programming in C++ Fall 2024 29/35

The Swith Statement

▶ The switch statement evaluates the expression, and then
compares it to the values in the case labels. If it finds a
match, execution of code jumps to that case label.

▶ The values in case labels must be constants, and may only be
integer types, which means that you
▶ This means only integer types, type char, or enumerations

(notyet discussed)
▶ This also means the case label must be a literal or a

variabledeclared to be const
▶ Note: You may not have case labels with regular variables,

strings, floating point literals, operations, or function calls

COP 3363: Introduction to Programming in C++ Fall 2024 30/35

The Swith Statement

▶ If you want to execute code only in the case that you jump to,
end the case with a break statement, otherwise execution of
code will ”fall through” to the next case

COP 3363: Introduction to Programming in C++ Fall 2024 31/35

The Conditional Operator

There is a special operator known as the conditional operator that
can be used to create short expressions that work like if/else
statements.

test expr ? true expr : false expr

▶ The test expression is evaluated for true/false value. This is
like the test expression of an if-statement.

▶ If the expression is true, the operator returns the true
expression value.

▶ If the test expression is false, the operator returns the false
expression value.

▶ Note that this operator takes three operands. It is a ternary
operator in the C++ language

COP 3363: Introduction to Programming in C++ Fall 2024 32/35

Conditional Operator Examples

cout <<(x >y) ? "x is greater than y" : "x is less
than or equal to y");

// Note that this expression gives the same result
as the following

if (x >y)
cout <<"x is greater than y";

else
cout <<"x is less than or equal to y");

COP 3363: Introduction to Programming in C++ Fall 2024 33/35

Conditional Operator Examples

(x <0 ? value = 10 : value = 20);

// this gives the same result as:
value = (x <0 ? 10 : 20);
// and also gives the same result as:
if (x <0)

value = 10;
else

value = 20;

COP 3363: Introduction to Programming in C++ Fall 2024 34/35

	title

