
Lecture 5
C++ Operators

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/26

mailto:shiboli@cs.fsu.edu


Operators

▶ Special built-in symbols that have functionality, and work on
operands

▶ operand - an input to an operator
▶ Arity - how many operands an operator takes

▶ unary operator - has one operand
▶ binary operator - has two operands
▶ ternary operator - has three operands

▶ Examples:

int x, y = 5, z;
z = 10; // assignment operator (binary)
x = y + z; // addition (binary operator)
x = -y; // -y is a unary operation (negation)
x++; // unary (increment)

COP 3363: Introduction to Programming in C++ Fall 2024 2/26



Operators

▶ cascading - linking of multiple operators, especially of related
categories, together in a single statement:

int x, y = 5, z;
// cascading arithmetic operators
x = a + b + c - d + e;
// cascading assignment operators
x = y = z = 3;

▶ Precedence - rules specifying which operators come first in a
statement containing multiple operators

x = a + b * c; // b * c happens first, since *
// has higher precedence

than +

COP 3363: Introduction to Programming in C++ Fall 2024 3/26



Operators

▶ Associativity - rules specifying which operators are evaluated
first when they have the same level of precedence.
▶ Most (but not all) operators associate from left to right.

COP 3363: Introduction to Programming in C++ Fall 2024 4/26



Assignment Operators

▶ Value on the right side (R-value) is assigned to (i.e. stored in)
the location (variable) on the left side (L-value)
▶ R-value – any expression that evaluates to a single

value(name comes from “right” side of assignment operator)
▶ L-value – A storage location! (not any old expression).

Avariable or a reference to a location. (name comes from
”left” side of assignment operator

variable name = expression

COP 3363: Introduction to Programming in C++ Fall 2024 5/26



Assignment Operators

▶ The assignment operator returns a reference to the L-value

▶ Example

x = 5;
y = 10.3;
z = x + y; // right side can be an

expression
a + 3 = b; // ILLEGAL! Left side must be a

storage location

COP 3363: Introduction to Programming in C++ Fall 2024 6/26



Assignment Operators

▶ Associates right-to-left

x = y = z = 5; // z = 5 evaluated first,
returns z, which is stored in y and so on

▶ Use appropriate types when assigning values to variables:

int x, y;
x = 5843;
y = -1234; // assign integers to int variables
double a, b;
a = 12.98;
b = -345.8; //assign decimal numbers to floats
char letter, symb;
letter = ’Z’;
symb = ’$’; // character literals to char

types

COP 3363: Introduction to Programming in C++ Fall 2024 7/26



Arithmetic Operators

▶ Modulus % is not legal for floating point types. / gives
floating point results

double x = 19.0, y = 5.0, z;
z = x / y; // z is now 3.8

COP 3363: Introduction to Programming in C++ Fall 2024 8/26



Arithmetic Operators

▶ For integer types, / gives the quotient, and % gives the
remainder (as in long division)

int x = 19, y = 5, q, r;
q = x / y; // q is 3
r = x % y; // r is 4

▶ An operation on two operands of the same type returns the
same type

COP 3363: Introduction to Programming in C++ Fall 2024 9/26



Operator Precedence

▶ Arithmetic has usual precedence
1. parentheses

2. Unary minus

3. ∗, /, %

4. + and −

5. operators on same level associate left to right

▶ Many different levels of operator precedence (about 18)

COP 3363: Introduction to Programming in C++ Fall 2024 10/26



Operator Precedence

▶ Arithmetic has usual precedence

▶ When in doubt, can always use parentheses

z = a - b * -c + d / (e - f); // 7 operators
in this statement

What order are they evaluated in?

COP 3363: Introduction to Programming in C++ Fall 2024 11/26



Some short-cut assignment operators (with
arithmetic)

▶ v += e means v = v + e

▶ v -= e means v = v - e

▶ v *= e means v = v * e

▶ v /= e means v = v / e

▶ v %= e means v = v % e

COP 3363: Introduction to Programming in C++ Fall 2024 12/26



Increment and Decrement Operators

▶ These are shortcut operators for adding or subtracting 1 from
a variable.

▶ Shortcut for x = x + 1

++x; // pre-increment (returns reference to
new x)

x++; // post-increment (returns value of old
x)

▶ Shortcut for x = x - 1

--x; // pre-decrement
x--; // post-decrement

COP 3363: Introduction to Programming in C++ Fall 2024 13/26



Increment and Decrement Operators

▶ Pre-increment: incrementing is done first and the updated
value of x is used in the rest of the expression

▶ Post-increment: incrementing is done first but a copy of the
old value of x is used in the rest of the expression

▶ Note - this only matters if the variable is actually used in
another expression. The two statements (x++ and ++x)by
themselves have the same discernible effect, even if the post
increment operation returns a copy of the old value.

COP 3363: Introduction to Programming in C++ Fall 2024 14/26



Increment and Decrement Operators

Example 1:

int x = 5, count = 7;
result = x * ++count;

int x = 5, count = 7;
result = x * count++;

COP 3363: Introduction to Programming in C++ Fall 2024 15/26



Increment and Decrement Operators

Example 1:

int x = 5, count = 7;
result = x * ++count; // result = 40, count = 8

int x = 5, count = 7;
result = x * count++; // result = 35, count = 8

COP 3363: Introduction to Programming in C++ Fall 2024 16/26



Increment and Decrement Operators

Example 2:

int x = 5, count = 7;
++count;
result = x * count;

int x = 5, count = 7;
count++;
result = x * count;

COP 3363: Introduction to Programming in C++ Fall 2024 17/26



Increment and Decrement Operators

Example 2:

int x = 5, count = 7;
++count;
result = x * count; // result = 40, count = 8

int x = 5, count = 7;
count++;
result = x * count; // result = 40, count = 8

COP 3363: Introduction to Programming in C++ Fall 2024 18/26



Increment and Decrement Operators

Example 3:

int x = 5, count = 7;
result = x * (++count);

int x = 5, count = 7;
result = x * (count++);

COP 3363: Introduction to Programming in C++ Fall 2024 19/26



Increment and Decrement Operators

Example 3:

int x = 5, count = 7;
result = x * (++count); // result = 40, count = 8

int x = 5, count = 7;
result = x * (count++); // result = 35, count = 8

COP 3363: Introduction to Programming in C++ Fall 2024 20/26



Increment and Decrement Operators

Example 4:

int x = 5, count = 7++;
result = x * count;

int x = 5, count = 7++;
result = x * (count++);

COP 3363: Introduction to Programming in C++ Fall 2024 21/26



Increment and Decrement Operators

Example 4:

int x = 5, count = ++7; // illegae statement, we
cannot change the literal 7

result = x * count;

int x = 5, count = 7++; // illegae statement, we
cannot change the literal 7

result = x * count;

COP 3363: Introduction to Programming in C++ Fall 2024 22/26



Automatic Type Conversions

▶ Typically, matching types are expected in expressions

▶ If types don’t match, ambiguity must be resolved

▶ There are some legal automatic conversions bewteen
built-intypes.

▶ Rules can be created for doing automatic type conversions
between user-defined types, too

COP 3363: Introduction to Programming in C++ Fall 2024 23/26



Automatic Type Conversions

▶ For atomic data types, can go from “smalle” to “larger” types
when loading a value into a storage location.

▶ General rule of thumb: Allowed if no chance for partial data

char -> short -> int -> long -> float ->
double -> long double

▶ Should avoid mixing unsigned and signed types, if possible

COP 3363: Introduction to Programming in C++ Fall 2024 24/26



Automatic Type Conversions: Examples

int i1, i2;
double d1, d2;
char c1;
unsigned int u1;

d1 = i1; // legal.
c1 = i1; // illegal. trying to stuff int into

char i1 = d1; // illegal. Might lose decimal
point data. i1 = c1; // legal

u1 = i1; // dangerous (possibly no warning)
d2 = d1 + i2; // result of double + int is a

double d2 = d1 / i2; // floating point
division (at least // one operand a float
type)

COP 3363: Introduction to Programming in C++ Fall 2024 25/26



Explicit type conversions (casting)

▶ Older C-style cast operations look like:

c1 = (char)i2; // cast a copy of the value of
i2 as a char, and assign to c1

i1 = (int)d2; // cast a copy of the value of
d2 as an int, and assign to i1

▶ Better to use newer C++ cast operators. For casting between
regular variables, use static cast

c1 = static cast<char>(i2);
i1 = static cast<int>(d2);

▶ Just for completeness, the newer C++ cast operators are:
static cast, dynamic cast, const cast,
reinterpret cast

COP 3363: Introduction to Programming in C++ Fall 2024 26/26


	title

