
Lecture 4
C++ Basics

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/36

mailto:shiboli@cs.fsu.edu


Structure of a C++ Program

▶ Sequence of statements, typically grouped into functions. see
add.cpp
▶ function: a subprogram. a section of a program performing

aspecific task.
▶ Every function body is defined inside a block.

▶ For a C++ executable, exactly one function called main()

▶ Can consist of multiple files and typically use libraries
▶ Statement: smallest complete executable unit of a program

▶ Declaration statement
▶ Execution statement: causes the program to perform some

actions during runtime, assignemnts, fucntion calls,
conditional, etc.

COP 3363: Introduction to Programming in C++ Fall 2024 2/36



Structure of a C++ Program

▶ Statement (continued): smallest complete executable unit
of a program
▶ Compound statement – any set of statements enclosed in

setbraces {} (often called a block)
▶ Simple C++ statments end with a semi-colon. (A block does

not typically need a semi-colon after it, except in special
circumstances).

COP 3363: Introduction to Programming in C++ Fall 2024 3/36



Libraries

▶ Usually pre-compiled code available to the programmer
toperform common tasks

▶ Compilers come with many libraries. Some are standard for
allcompilers, and some may be system specific.

▶ Two parts
▶ Interface: header file, which contains names and

declarationsof items available for use
▶ Implementation: pre-compiled definitions, or implementation

code. In a separate file, location known to compiler
▶ Use the #include directive to make a library part of a

program (satisfies declare-before-use rule)

COP 3363: Introduction to Programming in C++ Fall 2024 4/36



Building and Running a C++ Program

▶ Starts with source code, like the first sample program
▶ Pre-processing

▶ The #include directive is an example of a pre-processor
directive (anything starting with #).

▶ #include <iostream>tells the preprocessor to copy the
standard I/O stream library header file into the program

▶ Compiling
▶ Syntax checking, translation of source code into object code

(i.e. machine language). Not yet an executable program.

COP 3363: Introduction to Programming in C++ Fall 2024 5/36



Building and Running a C++ Program

▶ Linking
▶ Puts together any object code files that make up a program,

as well as attaching pre-compiled library implementation code
(like the standard I/O library implementation, in this example)

▶ End result is a final target – like an executable program

▶ Run it!

COP 3363: Introduction to Programming in C++ Fall 2024 6/36



Typical Code Elements

▶ Comments - Ignored by the Compiler

▶ Directives - For preprocessing

▶ Literals - Hardcoded values. Eg: 10

▶ Keywords - Words with special meaning to the compiler.
Eg:int

▶ Identifiers - Names for variables, functions, etc.

▶ Operators - Symbols that perform certain operations. Eg: +

COP 3363: Introduction to Programming in C++ Fall 2024 7/36



Comments

▶ Comments are for documenting programs. They are ignored
by the compiler.

▶ Block style (like C)

/* This is a comment
It can span multiple
lines */

▶ Line comments – use the double-slash //

int x; // This is a comment
x = 3; // This is a comment

COP 3363: Introduction to Programming in C++ Fall 2024 8/36



Data Types

Primitive/Fundamental data types: are the built-in types
defined by the C++ language. These types represent the most
basic forms of data that the language can manipulate directly,
without the need for any additional libraries or user-defined classes.
(see data types.cpp)

▶ bool: has two possible values, true or false
▶ char: represents a single character.

▶ Typically 1 byte
▶ Stored with an integer code underneath (ASCII on most

computers today)

COP 3363: Introduction to Programming in C++ Fall 2024 9/36



Data Types

▶ integer: has two possible values, true or false
▶ short - (usually at least 2 bytes)
▶ int - (4 bytes on most systems)
▶ long - (usually 4 or more bytes)
▶ The integer types have regular and unsigned versions

▶ floating point types: for storage of decimal numbers (i.e. a
fractional part after the decimal)
▶ short - 4 bytes
▶ double - 8 bytes
▶ long double - more than 8 bytes

COP 3363: Introduction to Programming in C++ Fall 2024 10/36



Identifiers

Identifiers are the names for things (variables, functions, etc) in the
language. Some identifiers are built-in, and others can be created
by the programmer.

▶ User-defined identifiers can consist of letters, digits, and
underscores

▶ Must start with a non-digit

▶ Identifiers are case sensitive (count and Count are different
variables) (see naming.cpp)

▶ Reserved words (keywords) cannot be used as identifiers

COP 3363: Introduction to Programming in C++ Fall 2024 11/36



Style Conventions for Identifiers

How to pick good names of variables, functions, etc.

▶ Don’t re-use common identifiers from standard libraries
(likecout, cin)

▶ Start names with a letter, not an underscore. System
identifiers and symbols in preprocessor directives often start
with the underscore.

▶ Pick meaningful identifiers – self-documenting

numStudents, firstName // good
a, ns, fn // bad

▶ a couple common conventions for multiple word identifiers

numberOfMathStudents
number_of_math_students

COP 3363: Introduction to Programming in C++ Fall 2024 12/36



Decalring Variables

▶ Declare Before Use: Variables must be declared before
theycan be used in any other statements

▶ Declaration format:

typeName varName1, varName2, ...; \\
/* examples */
int numStudents; // variable of type integer
double weight; // variable of type double
char letter; // variable of type character
/* declare multiple variables in a single

statement */
int test1, test2, finalExam;
double average, gpa;

COP 3363: Introduction to Programming in C++ Fall 2024 13/36



Initializing Variables

▶ To declare a variable is to tell the compiler it exists, and
toreserve memory for it

▶ To initialize a variable is to load a value into it for the first
time

▶ If a variable has not been initialized, it contains whatever bits
are already in memory at the variable’s location (i.e. a
garbage value) — This is a very common mistake and hard to
debug. (see code example var init.cpp)

COP 3363: Introduction to Programming in C++ Fall 2024 14/36



Initializing Variables

▶ One common way to initialize variables is with an assignment
statement.

int numStudents;
double weight;
char letter;
// initialize the vars
numStudents = 10;
weight = 160.35;
letter = ‘A’;

COP 3363: Introduction to Programming in C++ Fall 2024 15/36



Initializing Variables

▶ Variables of built-in types can be declared and initialized on
the same line, as well

int numStudents = 10;
double weight = 160.35;
char letter = ‘A‘;
int test1 = 96, test2 = 83, finalExam = 91;
double x = 1.2, y = 2.4, z = 12.9;

COP 3363: Introduction to Programming in C++ Fall 2024 16/36



Initializing Variables

▶ An alternate form of initializing and declaring at once:

// these are equivalent to the ones above
int numStudents(10);
double weight(160.35);
char letter(‘A‘);
int test1(96), test2(83), finalExam(91);
double x(1.2), y(2.4), z(12.9);

COP 3363: Introduction to Programming in C++ Fall 2024 17/36



Constants

▶ A variable can be declared to be constant. This means it
cannot change once it’s declared and initialized.

▶ Use the keyword const

▶ MUST declare and initialize on the same line see
const test.cpp

const int SIZE = 10;
const double PI = 3.1415;
// this one is illegal, because it is not
// initialized on the same line
const int LIMIT; // BAD!!!
LIMIT = 20;

▶ A common convention is to name constants with all-caps
(not required)

COP 3363: Introduction to Programming in C++ Fall 2024 18/36



Symbolic Constants (An Alternative)

▶ A symbolic constant is created with a preprocessor directive,
#define. (This directive is also used to create macros).

▶ Examples:

#define PI 3.14159
#define DOLLAR ‘$‘
#define MAXSTUDENTS 100

▶ The preprocessor replaces all occurrences of the symbol in
code with the value following it. (like find/replace in MS
Word).

▶ This happens before the actual compilation stage begins.

COP 3363: Introduction to Programming in C++ Fall 2024 19/36



const vs #define

▶ Type Safety:
▶ const: has a specific type, which is checked by the compiler
▶ #define: no specific type, simply text substitutions

▶ Scope:
▶ const: subject to C++ scoping rules
▶ #define: globally visible from the point of definition

COP 3363: Introduction to Programming in C++ Fall 2024 20/36



Literals

▶ Literals are also constants. They are literal values written in
code.

▶ Integer literal - an actual integer number written in code (4,
-10, 18) (see literal int.cpp)
▶ If an integer literal is written with a leading 0, it’s

interpretedas an octal value (base 8)
▶ If an integer literal is written with a leading 0x, it’s

interpretedas a hexadecimal value (base 16)
▶ Example

int x = 26; // integer value 26
int y = 032; // octal 32 = decimal

value 26
int z = 0x1A; // hex 1A = decimal

value 26

COP 3363: Introduction to Programming in C++ Fall 2024 21/36



Literals

▶ Floating point literal - an actual decimal number written in
code (4.5, -12.9, 5.0)
▶ These are interpreted as type double by standard C++

compilers
▶ Can also be written in exponential (scientific) notation:

(3.12e5, 1.23e − 10)

▶ Character literal - a character in single quotes: (‘F’, ‘a’, ‘\n’)

▶ String literal - a string in double quotes: (“Hello”,
“Bye”,“Wow!\n”)

▶ Boolean literal - true or false

COP 3363: Introduction to Programming in C++ Fall 2024 22/36



Escape Sequences

▶ String and character literals can contain special escape
sequences

▶ They represent single characters that cannot be represented
with a single character from the keyboard in your code

▶ The backslash \is the indicator of an escape sequence. The
backslash and the next character are together considered ONE
item (one char)

COP 3363: Introduction to Programming in C++ Fall 2024 23/36



Escape Sequences

▶ Some common escape sequences are listed in the table below
▶ \n - new line
▶ \t - tab
▶ \" - double quote
▶ \’ - single quote
▶ \\ - backslash

COP 3363: Introduction to Programming in C++ Fall 2024 24/36



Input and Output Streams

▶ In C++ we use do I/O with “stream objects”, which are
tiedto various input/output devices.

▶ These stream objects are predefined in the iostream library.
▶ cout - standard output stream

▶ Of class type ostream (to be discussed later)
▶ Usually defaults to the monitor

COP 3363: Introduction to Programming in C++ Fall 2024 25/36



Input and Output Streams

▶ cin - standard input stream
▶ Of class type istream (to be discussed later)
▶ Usually defaults to the keyboard

▶ cerr - standard error stream
▶ Of class type ostream

▶ Usually defaults to the monitor, but allows error messages to
be directed elsewhere (like a log file) than normal output

COP 3363: Introduction to Programming in C++ Fall 2024 26/36



Using Streams

▶ To use these streams, we need to include the iostream library
into our programs. (see streams.cpp)

#include <iostream>
using namespace std;

▶ The using statement tells the compiler that all uses of these
names (cout, cin, etc) will come from the “standard”
namespace.

COP 3363: Introduction to Programming in C++ Fall 2024 27/36



Using the Output Stream

▶ output streams are frequently used with the insertion
operator <<

▶ Format:

outputStreamDestination <<itemToBePrinted

▶ The right side of the insertion operator can be a variable,
aconstant, a value, or the result of a computation or operation

COP 3363: Introduction to Programming in C++ Fall 2024 28/36



Using the Output Stream

▶ Examples (see outputs.cpp)

cout << numStudents << endl; // contents of a
variable

cout << numStudents << "\n";
cout << "Hello World"; // string literal
cout <<’a’; // character literal
cout <<x + y - z; // result of a computation
cerr << "Error occurred"; // string literal

printed to standard error

COP 3363: Introduction to Programming in C++ Fall 2024 29/36



Cascading Output

▶ When printing multiple items, the insertion operator can be
“cascaded”.

▶ Cascading is placing another operator after an output item to
insert a new output item.

cout << "Average = " << avg << ’\n’;
cout << var1 << ’\t’ << var2 << ’\t’ << var3;

▶ We won’t utilize cerr in this course. It’s less common than
cout esp. in intro programming, but here for completeness.

COP 3363: Introduction to Programming in C++ Fall 2024 30/36



Input Streams

▶ input streams are frequently used with the extraction
operator >>

▶ Format:

inputStreamSource >> locationToStoreData

▶ The right side of the extraction operator MUST be a memory
location. For now, this means a single variable!

▶ By default, all built-in versions of the extraction operator will
ignore any leading “white-space” characters (spaces, tabs,
newlines, etc)

▶ In case if strings, the extraction operator will keep reading
until it encounters a white space character. (see inputs.cpp)

COP 3363: Introduction to Programming in C++ Fall 2024 31/36



Examples

int numStudents;
cin >> numStudents; // read an integer

(see inputs.cpp)

double weight;
cin >> weight; // read a double

cin >>’\n’; // ILLEGAL. Right side must be a
variable

cin >> x + y; // ILLEGAL. x + y is a computation,
not a variable

COP 3363: Introduction to Programming in C++ Fall 2024 32/36



Examples

The extraction operator can be cascaded as well: (see
inputs.cpp)

int x, y;
double a;
cin >> x >> y >> a; // read two integers and a

double from input

COP 3363: Introduction to Programming in C++ Fall 2024 33/36



Some special formatting for decimal numbers

You will need the iomanip library for this.

▶ By default, decimal (floating-point) numbers will print in
standard notation while possible, using scientific notation only
when the numbers are too small or too large.

▶ Usually, cout prints out floats only as far as needed, up to a
certain preset number of decimal places (before rounding the
printed result).

double x = 4.5, y = 12.666666666666, z = 5.0;
cout << x; // will likely print 4.5
cout << y; // will likely print 12.6667
cout << z; // will likely print 5

COP 3363: Introduction to Programming in C++ Fall 2024 34/36



Magic Fomula

A special “magic formula” for controlling how many decimal places
are printed: (see formats.cpp)

cout.setf(ios::fixed); //fixed point notation
cout.setf(ios::showpoint);
// so that decimal point will always be shown
cout.precision(2);
// sets floating point types to print to 2 decimal

places (or use your desired number)
cout.setf(ios::scientific);
// float types formatted in exponential notation

COP 3363: Introduction to Programming in C++ Fall 2024 35/36



Alternative Method

Here’s an alternate way to set the “fixed” and “showpoint”
flags

cout << fixed;
// uses the "fixed" stream manipulator
cout << showpoint;
// uses the "showpoint" stream manipulator
cout << setprecision(3); // uses the set precision

stream manipulator (you will need the iomanip
library for this)

//The above sets precision of the value to 3
numbers. You can change this value based on what
you need.

COP 3363: Introduction to Programming in C++ Fall 2024 36/36


	title

