
Lecture 19
Structures

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/40

mailto:shiboli@cs.fsu.edu


Why Structures

We have plenty of simple types for storing single items like
numbers, characters. But is this really enough for storing more
complex things, like patient records, address books, tables,
etc.?

COP 3363: Introduction to Programming in C++ Fall 2024 2/40



Why Structures

It would be easier if we had mechanisms for building up more
complex storage items that could be accessed with single variable
names

▶ user: id, age, hobbies, address, gender, ...

▶ car: color, type, mgp, brand, price, horse power, 0-60,
...

▶ smart phone: os, cpu, memory, gpu, manufacture, band, ...

▶ ...

COP 3363: Introduction to Programming in C++ Fall 2024 3/40



Why Structures

▶ Compund Storage - there are some built-in ways to
encapsulate multiple pieces of data under one name
▶ Array - we already know about this one. Indexed

collections,and all items are the same type
▶ Sturcture - keyword struct gives us another way to

encapsulate multiple data items into one unit. In this case,
items do not have to be the same type

▶ Structures are good for building records – like database
records, or records in a file

COP 3363: Introduction to Programming in C++ Fall 2024 4/40



What is a Structure

A structure is a collection of data elements, encapsulated into one
unit.

▶ A structure definition is like a blueprint for the structure. It
takes up no storage space itself – it just specifies what
variables of this structure type will look like

▶ An actual structure variable is like a box with multiple data
fields inside of it. Consider the idea of a student database.
One student record contains multiple items of information
(name, address, SSN, GPA, etc)

COP 3363: Introduction to Programming in C++ Fall 2024 5/40



What is a Structure

▶ Properties of a structure:
▶ internal elements may be of various data types
▶ order of elements is arbitrary (no indexing, like with arrays)
▶ Fixed size, based on the combined sizes of the internal

elements

COP 3363: Introduction to Programming in C++ Fall 2024 6/40



Creating Structure definitions and variables

Structure Definitions The basic format of a structure definition
is:

struct structureName
{

// data elements in the structure
};

▶ struct is a keyword

▶ The data elements inside are declared as normal variables.
structureName becomes a new type.

▶ By themselves, these definitions above are not variables and
do not take up storage

COP 3363: Introduction to Programming in C++ Fall 2024 7/40



Example

/* A structure representing the parts of a fraction (a
rational number) */

struct Fraction
{

int num; // the numerator of the fraction
int denom; // the denominator of the fraction

};

COP 3363: Introduction to Programming in C++ Fall 2024 8/40



Example

/* A structure representing a record in a student
database */

struct Student
{

char fName[20]; // first name
char lName[20]; // last name
int socSecNumber; // social security number
double gpa; // grade point average

};

COP 3363: Introduction to Programming in C++ Fall 2024 9/40



Structure variables

▶ To create an actual structure variable, use the structure’s
name as a type, and declare a variable from it. Format:

structureName variableName;

▶ Variations on this format include the usual forms for creating
arrays and pointers, and the comma-separated list for multiple
variables

COP 3363: Introduction to Programming in C++ Fall 2024 10/40



Structure variables

▶ Examples:

Fraction f1; // f1 is now a ’Fraction’
Fraction fList[10]; // an array of

’Fraction’//structures
Fraction * fptr; // a pointer to a

’Fraction’//structure
Student stu1; // a Student structure variable
Student mathclass[10]; // an array of 10 Students
Student s1, s2, s3; // three Student variables

COP 3363: Introduction to Programming in C++ Fall 2024 11/40



Legal variations in declaration syntax

▶ The definition of a structure and the creation of variables can
be combined into a single declaration, as well.

▶ Just list the variables after the structure definition block (the
blueprint), and before the semi-colon:

struct structureName
{

// data elements in the structure
} variable1, variable2, ... , variableN;

COP 3363: Introduction to Programming in C++ Fall 2024 12/40



Example

struct Fraction
{

int num; // the numerator of the fraction
int denom; // the denominator of the fraction

} f1, fList[10], *fptr; // variable, array, and pointer
created

COP 3363: Introduction to Programming in C++ Fall 2024 13/40



Legal variations in declaration syntax

▶ In fact, if you only want structure variables, but don’t plan to
re-use the structure type (i.e. the blueprint), you don’t even
need a structure name:

struct
// note: no structure NAME given
{

int num;
int denom;

} f1, f2, f3;
// three variables representing fractions

COP 3363: Introduction to Programming in C++ Fall 2024 14/40



Legal variations in declaration syntax

▶ Of course, the advantage of giving a structure definition a
name is that it is reusable. It can be used to create structure
variables at any point later on in a program, separate from the
definition block.

COP 3363: Introduction to Programming in C++ Fall 2024 15/40



Legal variations in declaration syntax

▶ You can even declare structures as variables inside of other
structure defintions (of different types):

struct Date // a structure to represent a date {
int month;
int day;
int year;

};
struct Employee
// a structure to represent an employee of a

company
{

char firstName[20];
char lastName[20];
Date hireDate;
Date birthDate;

};

COP 3363: Introduction to Programming in C++ Fall 2024 16/40



Using structures

▶ Once a structure variable is created, how do we use it? How
do we access its internal variables (often known as its
members)?

▶ To access the contents of a structure, we use the
dot-operator . Format:

structVariableName.dataVariableName

COP 3363: Introduction to Programming in C++ Fall 2024 17/40



Using structures

▶ Example, using the fraction structure:

Fraction f1, f2;
f1.num = 4; // set f1’s numerator to 4
f1.denom = 5; // set f1’s denominator to 5
f2.num = 3; // set f2’s numerator to 3
f2.denom = 10; // set f2’s denominator to 10
cout << f1.num << ’/’ << f1.denom; // prints 4/5
cout << f2.num << ’/’ << f2.denom; // prints 3/10

COP 3363: Introduction to Programming in C++ Fall 2024 18/40



Using structures

▶ Example, using the fraction structure:

Fraction f1, f2;
f1.num = 4; // set f1’s numerator to 4
f1.denom = 5; // set f1’s denominator to 5
f2.num = 3; // set f2’s numerator to 3
f2.denom = 10; // set f2’s denominator to 10
cout << f1.num << ’/’ << f1.denom; // prints

4/5
cout << f2.num << ’/’ << f2.denom; // prints

3/10

COP 3363: Introduction to Programming in C++ Fall 2024 19/40



Example, using the student structure:

Student sList[10]; // array of 10 students

// set first student’s data: (John Smith, SSN:123456789,
GPA: 3.75)

strcpy(sList[0].fName, "John");
strcpy(sList[0].lName, "Smith");
sList[0].socSecNumber = 123456789;
sList[0].gpa = 3.75;

COP 3363: Introduction to Programming in C++ Fall 2024 20/40



Example, using the student structure:

// assume there’s more code here that initializes other
students

// This loop prints all 10 students -- their names and
their GPA

cout << fixed << setprecision(2);
for (int i = 0; i < 10; i++)
{

cout << sList[i].fName << ’ ’ << sList[i].lName << ’ ’
<< sList[i].gpa << ’\n’;

}

COP 3363: Introduction to Programming in C++ Fall 2024 21/40



A shortcut for initializing structs

▶ While we can certainly initialize each variable in a structure
separately, we can use an initializer list on the declaration line,
too

▶ This is similar to what we saw with arrays

▶ This is only usable on the declaration line (like with arrays)

▶ The initializer set should contain the struct contents in the
same order that they appear in the struct definition

COP 3363: Introduction to Programming in C++ Fall 2024 22/40



Examples

Fraction f1 = 3, 5; //initialize num=3, denom=5 // This
would be the same as doing the following:

f1.num = 3;
f1.denom = 5;

Student s1 = {"John", "Smith", 123456789, 3.75};
Student s2 = {"Alice", "Jones", 123123123, 2.66};

COP 3363: Introduction to Programming in C++ Fall 2024 23/40



Use Pointers to Structure

▶ If we have a pointer to a structure, things are a little trickier:

Fraction f1; // a fraction structure
Fraction *fPtr; // pointer to a fraction
fPtr = &f1; // fPtr now points to f1
f1.num = 3; // this is legal, of course
fPtr.num = 10; // how about this?

COP 3363: Introduction to Programming in C++ Fall 2024 24/40



Use Pointers to Structure

▶ If we have a pointer to a structure, things are a little trickier:

Fraction f1; // a fraction structure
Fraction *fPtr; // pointer to a fraction
fPtr = &f1; // fPtr now points to f1
f1.num = 3; // this is legal, of course
fPtr.num = 10; // how about this?

▶ NO! ILLEGAL, cannot put a pointer on the left side of
the dot-operator

COP 3363: Introduction to Programming in C++ Fall 2024 25/40



Use Pointers to Structure

▶ Remember that to get to the target of a pointer, we
dereference it. The target of fPtr is *fPtr. So how about
this?

*fPtr.num = 10; // how about this?

COP 3363: Introduction to Programming in C++ Fall 2024 26/40



Use Pointers to Structure

*fPtr.num = 10; // how about this?

▶ Closer but not quite.

▶ The problem with this is that the dot-operator has higher
precedence, so this would be interpreted as:

*(fPtr.num) = 10; // cannot put a pointer on the
left of the dot

COP 3363: Introduction to Programming in C++ Fall 2024 27/40



Use Pointers to Structure

▶ But if we use parentheses to force the dereference to happen
first, then it works:

(*fPtr).num = 10; // YES!

▶ Alternative operator for pointers: While the above example
works, it’s a little cumbersome to have to use the parentheses
and the dereference operator all the time.

▶ So there is a special operator for use with pointers to
structures. It is the arrow operator:

pointerToStruct -> dataVariable

COP 3363: Introduction to Programming in C++ Fall 2024 28/40



Example

Fraction * fPtr; // pointer to a fraction

// assume this has been pointed at a valid target
// ...

fPtr->num = 10; // set fraction’s numerator to 10
fPtr->denom = 11; // denominator set to 11
cout << fPtr->num << ’/’ << fPtr->denom;
//prints: 10/11

COP 3363: Introduction to Programming in C++ Fall 2024 29/40



Accessing members of nested structures

▶ Earlier, we saw an example of a structure variable used within
another structure definition

struct Date // Date is now a type name
{

int month;
int day;
int year;

}; // so that "Date" is the type name
struct Employee
{

char firstName[20];
char lastName[20];
Date hireDate;
Date birthDate;

};

COP 3363: Introduction to Programming in C++ Fall 2024 30/40



Accessing members of nested structures

Here’s an example of initializing all the data elements for one
employee variable:

Employee emp; // emp is an employee variable

// Set the name to "Alice Jones"
strcpy(emp.firstName, "Alice");
strcpy(emp.lastName, "Jones");

// set the hire date to March 14, 2001
emp.hireDate.month = 3;
emp.hireDate.day = 14;
emp.hireDate.year = 2001;

// sets the birth date to Sept 15, 1972
emp.birthDate.month = 9;
emp.birthDate.day = 15;
emp.birthDate.year = 1972;

COP 3363: Introduction to Programming in C++ Fall 2024 31/40



Accessing members of nested structures

Here’s an example of an employee initialization using our shortcut
initializer form:

Employee emp2 = { "John", "Smith", {6, 10, 2003},{2,
19, 1981} };

// John Smith, whose birthday is Feb 19, 1981, was
hired on June 10, 2003

COP 3363: Introduction to Programming in C++ Fall 2024 32/40



Structures and the assignment operator

▶ With regular primitive types we have a wide variety of
operations available, including assignment, comparisons,
arithmetic, etc.

▶ Most of these operations would NOT make sense on
structures. Arithmetic and comparisons, for example:

Student s1, s2;
s1 = s1 + s2; // ILLEGAL!
// How would we add two students, anyway?
if (s1 < s2) // ILLEGAL. What would this mean?

COP 3363: Introduction to Programming in C++ Fall 2024 33/40



Structures and the assignment operator

▶ Using the assignment operator on structures IS legal, as long
as they are the same type. Example (using previous struct
definitions):

Student s1, s2;
Fraction f1, f2;
s1 = s2; // LEGAL. Copies contents of s2 into s1
f1 = f2; // LEGAL. Copies f2 into f1

COP 3363: Introduction to Programming in C++ Fall 2024 34/40



Structures and the assignment operator

▶ Note that in the above example, the two assignment
statements are equivalent to doing the following:

// these 4 lines are equivalent to s1 = s2;
strcpy(s1.fName, s2.fName);
strcpy(s1.lName, s2.lName);
s1.socSecNumber = s2.socSecNumber;
s1.gpa = s2.gpa;

//these 2 lines are equivalent to f1 = f2;
f1.num = f2.num;
f1.denom = f2.denom;

▶ Clearly, direct assignment between entire structures is easier,
if a full copy of the whole thing is the desired result!

COP 3363: Introduction to Programming in C++ Fall 2024 35/40



Passing structures into and out of functions

▶ Just like a variable of a basic type, a structure can be passed
into functions, and a structure can be returned from a
function.

▶ To use structures in functions, use structname as
theparameter type, or as a return type, on a function
declaration

// function that passes a structure variable as a
parameter

void PrintStudent(Student s);

// function that passes in structure variables and
returns a struct

Fraction Add(Fraction f1, Fraction f2);

COP 3363: Introduction to Programming in C++ Fall 2024 36/40



Pass by value, reference, address

▶ Just like with regular varaibles, structures can be passed by
value or by reference, or a pointer to a structure can be
passed (i.e., pass by address)

▶ If just a plain structure variable is passed, as in the above
examples, it’s pass by value. A copy of the structure is made

▶ To pass by reference, use the & on the structure type, just as
with regular data types

COP 3363: Introduction to Programming in C++ Fall 2024 37/40



Pass by value, reference, address

▶ To pass by address, use pointers to structures as the
parameters and/or return

▶ As with pointers to the built-in types, you can use const to
ensure a function cannot change the target of a pointer

▶ It’s often a GOOD idea to pass structures to and from
functions by address or by reference
▶ structures are compound data, usually larger than plain atomic

variables
▶ Pass-by-value means copying a structure. NOT copying is

desirable for efficiency, especially if the structure is very large

COP 3363: Introduction to Programming in C++ Fall 2024 38/40



Examples

// function that passes a pointer to student
//structure as a parameter
void GetStudentData(Student* s);

// function that passes in structures by const
// reference, and returns a struct by value
Fraction Add(const Fraction& f1, const Fraction& f2);

COP 3363: Introduction to Programming in C++ Fall 2024 39/40



Examples

//function that uses const on a structure pointer
// parameter. This function could take in an array
// of Students, or the address of one student.
void PrintStudents(const Student* s);

// or, this prototype is equivalent to the one above n
void PrintStudents(const Student s[]);

COP 3363: Introduction to Programming in C++ Fall 2024 40/40


	title

