
Lecture 18
Introduction to Process Management

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/25

mailto:shiboli@cs.fsu.edu

Multi-Tasking

▶ The UNIX Operating System provides an environment in
which multiple “tasks” can run concurrently
▶ The ability to run multiple programs on the same machine

concurrently
▶ Also used to indicate that multiple concurrent processes can

execute at the same time in a single processor environment

▶ UNIX supports multi-tasking via
▶ Process abstraction

COP 3363: Introduction to Programming in C++ Fall 2024 2/25

Life-Cycle of A Program

Program vs. Prcoess

▶ Program: This is a static set of instructions written in a
language like C++ that is stored on disk.

▶ Process: Once a program is loaded and executed, it becomes
a process. A process is an active instance of a program that
runs in memory

COP 3363: Introduction to Programming in C++ Fall 2024 3/25

The Process Abstraction

▶ In the traditional systems a process executes a single sequence
of instructions in an address space.
▶ The program counter (PC) is a special hardware register

thattracks the current instruction that is to be execute
▶ In UNIX, many processes are active at the same time and the

OS provides some aspects of a virtual machine
▶ Processes have their own registers and memory, but rely on the

OS for I/O, device control and interacting with other processes

COP 3363: Introduction to Programming in C++ Fall 2024 4/25

The Process Abstraction

▶ Process abstraction is a key concept in operating systems that
simplifies complex tasks by allowing us to view a running
program as an independent, manageable entity — a process.
▶ Run in a virtual address space
▶ Content for resources such as processor(s), memory,

andperipheral devices
▶ All of the above is managed by the OS the memory

management system; the I/O system; the process management
and scheduling system, and the Interprocess Communication
system (IPC)

COP 3363: Introduction to Programming in C++ Fall 2024 5/25

The Process Abstraction

Overall, process abstraction allows developers to focus on the
high-level logic of applications without needing to manage
low-level system details directly.

▶ Encapsulate the Execution State: operates independently
from other processes

▶ Separate Resource Management: OS takes care of
scheduling, memory allocation for each process, enabling
multitasking and efficient resource sharing.

COP 3363: Introduction to Programming in C++ Fall 2024 6/25

The Process Abstraction

▶ Facilitate Inter-Process Communication (IPC): Through
mechanisms like pipes, message queues, and shared memory,
processes can exchange information without direct access to
each other’s memory.

▶ Ensure Isolation and Security: Processes run in isolated
memory spaces, preventing unauthorized access to each
other’s data, which enhances security and stability.

COP 3363: Introduction to Programming in C++ Fall 2024 7/25

Multi-Processing

Multi-processing refers to a system in which multiple processes are
executed simultaneously.

▶ Processes may belong to the same program or different
programs

▶ Processes might communicate with each other via
Inter-Process Communication

▶ Multi-processing leverages multiple CPUs or cores to execute
these processes concurrently, thus improving performance in
tasks that can be parallelized.

COP 3363: Introduction to Programming in C++ Fall 2024 8/25

Multi-Programming

Multi-programming refers to a system where multiple programs are
loaded into memory and executed concurrently by the operating
system, often by quickly switching between them.

▶ Managing CPU time efficiently by keeping several programs in
memory and letting them take turns running.

▶ System switches between programs when one is waiting for
resources (like I/O), a technique called context switching.

COP 3363: Introduction to Programming in C++ Fall 2024 9/25

Key Differences

▶ Purpose:
▶ Executing multiple processes simultaneously
▶ Efficiently managing CPU time among programs

▶ Execution:
▶ Can run processes on multiple cores
▶ Typically uses a single core with time-slicing

COP 3363: Introduction to Programming in C++ Fall 2024 10/25

Key Differences

▶ Resource Sharing:
▶ Processes are isolated, IPC needed for sharing
▶ Programs share CPU and memory managed by the OS

▶ Example Use:
▶ Web servers, parallel computing
▶ Desktop OS running multiple applications

COP 3363: Introduction to Programming in C++ Fall 2024 11/25

How to Create A Process

▶ Processes are created by the OS, typically by the fork
command.
▶ The process that calls fork is the parent and the new processis

the child.
▶ The child inherits a replica of the parent’s address space and

isessentially a clone.
▶ Both continue to execute the identical program.
▶ Fork returns the child’s process id to the parent, and the value

0 to the child.
▶ The exec system call loads another program and starts

running this (typically in the child process)

COP 3363: Introduction to Programming in C++ Fall 2024 12/25

How to Create A Process: Example

#include <iostream>
#include <unistd.h>
int main() {

// Call fork() to create a new process
pid_t pid = fork();

// Check if fork() was successful
if (pid < 0) {

// Fork failed
} else if (pid == 0) {

// This is the child process
} else {

// This is the parent process
}

}

COP 3363: Introduction to Programming in C++ Fall 2024 13/25

Process IDs

fork() returns 0 to the child, and child PID to the parent.

▶ getpid(): get process id

▶ getppid(): get parent’s process id

...
} else if (pid == 0) {

// Child process
cout << "Child process - PID: " << getpid() << ", Parent

PID: " << getppid();
....

COP 3363: Introduction to Programming in C++ Fall 2024 14/25

Process States

▶ All processes in UNIX have a “state of execution” which
indicates the current stage of the process in its life-cycle.

▶ A process can only be in one of the following states at a time

COP 3363: Introduction to Programming in C++ Fall 2024 15/25

Process States

▶ New
▶ Description: The process is being created. It hasn’t yet been

admitted by the operating system scheduler and therefore isn’t
ready for execution.

▶ Transition: Moves to the Ready state once it’s set up and
admitted by the scheduler.

▶ Ready
▶ Description: The process is loaded into memory and ready to

execute, waiting for CPU time. Multiple processes can be in
the ready state, waiting to be scheduled by the OS.

▶ Transition: The scheduler picks it up, and it transitions to the
Running state.

COP 3363: Introduction to Programming in C++ Fall 2024 16/25

Process States

▶ Running
▶ Description: The process is currently executing on the CPU.

Only one process can be in the Running state per CPU core at
any moment (on a single-core system).

▶ Transition: A process in the Running state may:
▶ Complete Execution and move to the Terminated state.

▶ Wait for an I/O operation or resource, which moves it to the
Waiting/Blocked state.

▶ Be preempted by the scheduler (time slice end), moving it
back to the Ready state.

COP 3363: Introduction to Programming in C++ Fall 2024 17/25

Process States

▶ Waiting/Blocked
▶ Description: The process is waiting for an event or resource,

such as I/O completion or a specific signal, so it can continue
executing. It cannot use the CPU while in this state.

▶ Transition: Once the required resource or event becomes
available, it returns to the Ready state.

COP 3363: Introduction to Programming in C++ Fall 2024 18/25

Process States

▶ Terminated (or Zombie)
▶ Description: The process has finished executing, either

normally or due to an error. It has released most of its
resources but still has an entry in the process table, allowing
the parent process to read its exit status.

▶ Zombie State: If a child process terminates but its parent
process hasn’t yet acknowledged (or “reaped”) it, the process
remains as a zombie.

▶ Transition: The process entry is removed from the process
table once the parent process reads the exit status using
wait(), fully clearing it from the system.

COP 3363: Introduction to Programming in C++ Fall 2024 19/25

Foreground and Background Processes

▶ A foreground process is one that occupies your shell (terminal
window), meaning that any new commands that are typed
have no effect until the previous command is finished

▶ If we’re running a process that might take a very long time,
and we want the terminal to be available in the meantime, we
can run the process in the background.

▶ When a process is run as a background process, the terminal
starts the job, then immediately displays the prompt waiting
for the next command.

▶ When the background job is complete, its results can be
displayed by bringing it back to the foreground.

COP 3363: Introduction to Programming in C++ Fall 2024 20/25

Inter-Process Communication (IPC)

▶ Why IPC?: Processes do not share memory by default, so
they need IPC mechanisms to exchange data.

▶ Common IPC Methods:
▶ Pipes: Simple communication channel, unidirectional.
▶ Shared Memory: Memory segment shared between processes.
▶ Message Queues & Semaphores: Structured and synchronized

ways to exchange data.

COP 3363: Introduction to Programming in C++ Fall 2024 21/25

Waiting for a Child Process with wait()

▶ Ensures that the parent process does not proceed until the
child has finished.

▶ wait() returns the PID of the terminated child.

▶ wait() prevents zombie processes: when wait() is called, the
parent process “reaps” the child process, effectively removing
it from the system. Without wait(), the child process might
become a zombie, as it has terminated but hasn’t been
acknowledged by the parent.

COP 3363: Introduction to Programming in C++ Fall 2024 22/25

Example wait()

// Parent process
std::cout << "Parent process (PID: " << getpid() << ") is

waiting for the child to finish." << std::endl;

wait(nullptr); // Wait for the child process to complete

std::cout << "Parent process detected that child has
finished." << std::endl;

COP 3363: Introduction to Programming in C++ Fall 2024 23/25

Exiting Child Processes Gracefully

▶ Using exit() in the Child Process: Ensures proper termination.

// Child process
std::cout << "This is the child process with PID: " <<

getpid() << std::endl;

// Simulate some work in the child process
sleep(2); // Pause for a couple of seconds

std::cout << "Child process is done. Exiting now." <<
std::endl;

exit(0);

COP 3363: Introduction to Programming in C++ Fall 2024 24/25

Process Priorities

▶ All Unix processes have a priority, which rates the importance
f one process with respect to all the other processes currently
in the system.

▶ Unix systems use a priority system with 40 priorities, ranging
from -20 (highest priority) to 19 (lowest priority.

▶ Processes started by regular users usually have priority 0
(normal)

COP 3363: Introduction to Programming in C++ Fall 2024 25/25

	title

