
Lecture 16
Dynamic Memory Allocation

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/28

mailto:shiboli@cs.fsu.edu

Program, Process and Memory Allocation

Program vs. Prcoess

▶ Program: This is a static set of instructions written in a
language like C++ that is stored on disk.

▶ Process: Once a program is loaded and executed, it becomes
a process. A process is an active instance of a program that
runs in memory

COP 3363: Introduction to Programming in C++ Fall 2024 2/28

Program, Process and Memory Allocation

Memory Allocation

▶ crucial for process execution

▶ assigning specific memory areas

▶ data, variables, and structures

COP 3363: Introduction to Programming in C++ Fall 2024 3/28

Allocating Memory

Static/Compile-Time Allocation: variables
or constants before the program runs
▶ Global Variables: Variables declared

outside of any function are stored in the
global memory segmen

▶ Static Variables: static
▶ Constants: #define, const

COP 3363: Introduction to Programming in C++ Fall 2024 4/28

Allocating Memory

Automatic Allocation: Memory is allocated
automatically on the stack
▶ Last in first out (LIFO)
▶ local variables within functions
▶ The stack is managed by the program’s

flow

COP 3363: Introduction to Programming in C++ Fall 2024 5/28

Allocating Memory

Dynamics Allocation:
▶ Memory allocated “on the fly” during run

time
▶ Memory is managed in the heap
▶ Allowing for flexible memory usage but

requiring explicit allocation and
deallocation to avoid memory leaks

COP 3363: Introduction to Programming in C++ Fall 2024 6/28

Example: Static Allocation

▶ Occurs at compile-time.

▶ Memory is allocated for global variables, static variables, and
constants, and remains in place for the entire duration of the
program.

static int count = 10;

COP 3363: Introduction to Programming in C++ Fall 2024 7/28

Example: Automatic/Stack Allocation

▶ Occurs at runtime, automatically on the stack.

▶ Typically used for local variables within functions.

▶ Memory is allocated when the variable is created and
automatically freed when it goes out of scope.

void example() {
int number = 42; // automatically allocated on

the stack
}

COP 3363: Introduction to Programming in C++ Fall 2024 8/28

Example: Dynamic Allocation

▶ Managed explicitly by the programmer using new and delete.

▶ Allows for flexible, runtime memory allocation, where the size
and duration can vary.

▶ Deal for large or unknown amounts of memory that may need
to persist beyond a single function scope.

// dynamically allocate memory on the heap
int* ptr = new int(5);
// free memory when done
delete ptr;

COP 3363: Introduction to Programming in C++ Fall 2024 9/28

Dynamic De-allocation

Memory deallocation in C++ is the process of freeing up
dynamically allocated memory that is no longer needed.

▶ Static/Stack handles deallocation automatically

▶ Heap handles deallocation mauanlly by the programmer

▶ If memory is not deallocated after it’s no longer needed, it can
lead to a memory leak.

▶ Memory that cannot be reclaimed or reused by the system,
reducing the available memory for other processes

COP 3363: Introduction to Programming in C++ Fall 2024 10/28

Dynamic Memory Allocation

We can dynamically allocate storage space while the programis
running, but we cannot create new variable names “on the fly”

▶ Creating the dynamic space.

▶ Storing its address in a pointer (so that the space can be
accesed)

COP 3363: Introduction to Programming in C++ Fall 2024 11/28

Allocating space with new

▶ To allocate space dynamic ally, use the unary operator new,
followed by the type being allocated.

new int; // dynamically allocates an int
new double; // dynamically allocates a double

COP 3363: Introduction to Programming in C++ Fall 2024 12/28

Allocating space with new

▶ If creating an array dynamically, use the same form, but put
brackets with a size after the type:

// dynamically allocates an array of 40 ints
new int[40];
// dynamically allocates an array of size doubles
// note that the size can be a variable
new double[size];

▶ These statements above are not very useful by themselves,
because the allocated spaces have no names!

COP 3363: Introduction to Programming in C++ Fall 2024 13/28

Allocating space with new

▶ The new operator returns the starting address of the allocated
space, and this address can be stored in a pointer:

// declare a pointer p
// dynamically allocate an int and load address into p
int * p;
p = new int;
// declare a pointer d
// dynamically allocate a double and load address

into d
double * d;
d = new double;

COP 3363: Introduction to Programming in C++ Fall 2024 14/28

Allocating space with new

// we can also do these in single line statements
int x = 40;
int * list = new int[x];
float * numbers = new float[x+10];

▶ Notice that this is one more way of initializing a pointer to a
valid target (and the most important one).

COP 3363: Introduction to Programming in C++ Fall 2024 15/28

Allocating space with new

So once the space has been dynamically allocated, how do weuse
it?

▶ For single items, we go through the pointer. Dereference the
pointer to reach the dynamically created target:

// dynamic integer, pointed to by p
int * p = new int;
// assigns 10 to the dynamic integer
*p = 10;
// prints 10
cout << *p;

COP 3363: Introduction to Programming in C++ Fall 2024 16/28

Allocating space with new

So once the space has been dynamically allocated, how do weuse
it?

▶ For dynamically created arrays, you can use either
pointer-offset notation, or treat the pointer as the array name
and use the standard bracket notation:

double * numList = new double[size];
for (int i = 0; i < size; i++)

numList[i] = 0; // initialize elements to 0
numList[5] = 20; // bracket notation
*(numList + 7) = 15; // pointer-offset notation

COP 3363: Introduction to Programming in C++ Fall 2024 17/28

Deallocation of dynamic memory

▶ To deallocate memory that was created with new, we use the
unary operator delete.

▶ The one operand should be a pointer that stores the address
of the space to be deallocated:

int * ptr = new int; // dynamically created int
// ...
delete ptr; // deletes the space that ptr points to
ptr = nullptr;

▶ Dangling Pointers: Not setting pointers to nullptr after
deletion can lead to accessing freed memory.

COP 3363: Introduction to Programming in C++ Fall 2024 18/28

Deallocation of dynamic memory

▶ To deallocate memory that was created with new, we use the
unary operator delete.

▶ The one operand should be a pointer that stores the address
of the space to be deallocated:

int * ptr = new int; // dynamically created
int

// ...
delete ptr; // deletes the space that ptr

points to
ptr = nullptr;

▶ Dangling Pointers: Not setting pointers to nullptr after
deletion can lead to accessing freed memory.

COP 3363: Introduction to Programming in C++ Fall 2024 19/28

Deallocation of dynamic memory

▶ Note that the pointer ptr still exists in this example. That’s a
named variable subject to scope and extent determined at
compile time. It can be reused:

ptr = new int[10]; // point p to a brand new array

COP 3363: Introduction to Programming in C++ Fall 2024 20/28

Deallocation of dynamic memory

▶ To deallocate a dynamic array, use this form delete []

int* arr = new int[5]; // Allocates memory for an
array of 5 integers

for (int i = 0; i < 5; i++) {
arr[i] = i + 1; // Assign values to each element

}

delete[] arr; // Deallocates the array memory
arr = nullptr; // Set to nullptr to avoid dangling

COP 3363: Introduction to Programming in C++ Fall 2024 21/28

Application Example: Dynamic Resizing Array

▶ If you have an existing array, and you want to make it bigger
(add array cells to it), you cannot simply append new cells to
the old ones.

▶ Remember that arrays are stored in consecutive memory, and
you never know whether or not the memory immediately after
the array is already allocated for something else.

▶ For that reason, the process takes a few more steps.

COP 3363: Introduction to Programming in C++ Fall 2024 22/28

Application Example: Dynamic Resizing Array

▶ Here is an example using an integer array. Let’s say this is the
original array:

int * list = new int[size];

▶ I want to resize this so that the array called list has space for5
more numbers (presumably because the old one is full).

COP 3363: Introduction to Programming in C++ Fall 2024 23/28

Application Example: Dynamic Resizing Array

There are four main steps.

▶ Create an entirely new array of the appropriate type and of
the new size. (You’ll need another pointer for this).

int * temp = new int[size + 5];

▶ Copy the data from the old array into the new array (keeping
them in the same positions). This is easy with a for-loop.

for (int i = 0; i < size; i++)
temp[i] = list[i];

COP 3363: Introduction to Programming in C++ Fall 2024 24/28

Application Example: Dynamic Resizing Array

There are four main steps.

▶ Delete the old array – you don’t need it anymore!

// this deletes the array pointed to by "list"
delete [] list;

▶ Change the pointer. You still want the array to be called ”list”
(its original name), so change the list pointer to the new
address.

list = temp;

COP 3363: Introduction to Programming in C++ Fall 2024 25/28

Application Example: Multidimensional Arrays

Creating dynamically sized matrices. Dynamic 2D arrays are useful
for applications like image processing or scientific computations
where matrix dimensions are determined at runtime.

int rows = 3, cols = 4;
int** matrix = new int*[rows];
for (int i = 0; i < rows; i++) {

matrix[i] = new int[cols];
}
// Fill and use matrix
for (int i = 0; i < rows; i++) {

delete[] matrix[i];
}
delete[] matrix;

COP 3363: Introduction to Programming in C++ Fall 2024 26/28

Application Example: Text Processing

Handling text in applications where strings can vary significantly in
size (e.g., text editors).

char* text = new char[256]; // initial allocation
// ...
// Expand text buffer if needed by allocating new space
// ...
delete[] text; // free when done

COP 3363: Introduction to Programming in C++ Fall 2024 27/28

Application Example: Advanced Data Structures

Trees provide a hierarchical structure for data storage, such as
organizing files or databases.

struct TreeNode {
int data;
TreeNode* left;
TreeNode* right;
TreeNode(int val) : data(val), left(nullptr),

right(nullptr) {}
};

TreeNode* root = new TreeNode(10);
root->left = new TreeNode(5);
root->right = new TreeNode(15);

COP 3363: Introduction to Programming in C++ Fall 2024 28/28

	title

