
Lecture 15
Pointers

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/57

mailto:shiboli@cs.fsu.edu

What is a Pointer?

▶ A pointer is a variable that stores a memory address.

▶ Pointers are used to store the addresses of other variables or
memory items.

COP 3363: Introduction to Programming in C++ Fall 2024 2/57

Why we need Pointers?

▶ Pointers allow direct access and manipulation of memory.
This is crucial in performance-critical application.

▶ Pointers are used to manage dynamic memory. This allows for
the creation of variables or objects at runtime, which is
essential when the size of data structures (like arrays) isn’t
known at compile time.

▶ When passing large objects (like structs or classes) to
functions.

COP 3363: Introduction to Programming in C++ Fall 2024 3/57

Declaring pointers:

▶ Pointer declarations use the * operator. They follow this
format:

typeName * variableName;
int n; // declaration of a variable n
int * p; // declaration of a pointer, called p

▶ In the example above, p is a pointer, and its type will be
specifically be referred to as ”pointer to int”, because it stores
the address of an integer variable. We also can say its type is:
int*

COP 3363: Introduction to Programming in C++ Fall 2024 4/57

Declaring pointers:

▶ The type is important. While pointers are all the same size,
as they just store a memory address, we have to know what
kind of thing they are pointing TO.

double * dptr; // a pointer to a double
char * c1; // a pointer to a character
float * fptr; // a pointer to a float

COP 3363: Introduction to Programming in C++ Fall 2024 5/57

Declaring pointers:

▶ Sometimes the notation is confusing, because different
textbooks place the * differently. The three following
declarations are equivalent:

int *p;
int* p;
int * p;

All three of these declare the variable p as a pointer to an int

COP 3363: Introduction to Programming in C++ Fall 2024 6/57

Declaring pointers:

▶ Another tricky aspect of notation: Recall that we can declare
mulitple variables on one line under the same type, like this:

int x, y, z; // three variables of type int

▶ Since the type of a ”pointer-to-int” is (int *), we might ask,
does this create three pointers?

int* p, q, r; // what did we just create?

COP 3363: Introduction to Programming in C++ Fall 2024 7/57

Declaring pointers:

▶ NO! This is not three pointers. Instead, this is one pointer
and two integers. If you want to create mulitple pointers on
one declaration, you must repeat the * operator each time

COP 3363: Introduction to Programming in C++ Fall 2024 8/57

Pointer dereferencing

▶ Once a pointer is declared, you can refer to the thing it points
to, known as the target of the pointer, by ”dereferencing the
pointer”. To do this, use the unary * operator:

int * ptr; // ptr is now a pointer-to-int
// ptr refers to the pointer itself
// *ptr the dereferenced pointer -- refers now to the

TARGET

COP 3363: Introduction to Programming in C++ Fall 2024 9/57

Pointer dereferencing

▶ Suppose that ptr is the above pointer. Suppose it stores the
address 1234. Also suppose that the integer stored at address
1234 has the value 99.

cout << "The pointer is: " << ptr;
cout << "The target is: " << *ptr;

COP 3363: Introduction to Programming in C++ Fall 2024 10/57

Pointer dereferencing

▶ Suppose that ptr is the above pointer. Suppose it stores the
address 1234. Also suppose that the integer stored at address
1234 has the value 99.

cout << "The pointer is: " << ptr; // prints
the pointer 1234

cout << "The target is: " << *ptr; // prints
the target 99

▶ Note: the exact print out of an addres may vary based on the
system.

COP 3363: Introduction to Programming in C++ Fall 2024 11/57

Pointer dereferencing

▶ The notation can be a little confusing.

▶ If you see the * in a declaration statement, with a type in
front of the *, a pointer is being declared for the first time.

▶ AFTER that, when you see the * on the pointer name, you
are dereferencing the pointer to get to the target.

COP 3363: Introduction to Programming in C++ Fall 2024 12/57

Pointer dereferencing

▶ Pointers don’t always have valid targets.
▶ A pointer refers to some address in the program’s memory

space.
▶ A program’s memory space is divided up into segements
▶ Each memory segment has a different purpose. Some

segments are for data storage, but some segments are for other
things, and off limits for data storage

COP 3363: Introduction to Programming in C++ Fall 2024 13/57

Pointer dereferencing

▶ Pointers don’t always have valid targets.
▶ If a pointer is pointing into an ”out-of-bounds”

memorysegment, then it does NOT have a valid target (for
your usage)

▶ If you try to dereference a pointer that doesn’t have a valid
target, your program will crash with a segmentation fault
error. This means you tried to go into an off-limits segment

COP 3363: Introduction to Programming in C++ Fall 2024 14/57

Initializing Pointers

So, how do we initialize a pointer? i.e. what can we assign into
it?

int * ptr;
ptr = ; // with what can we fill this blank?

▶ The null pointer

▶ Pointers of the same type

▶ The “address of” operator

▶ Reinterpreted pointer of a different type

▶ Address to a dynamically allocated chunk of memory.

COP 3363: Introduction to Programming in C++ Fall 2024 15/57

The null pointer

▶ here is a special pointer whose value is 0. It is called the null
pointer

▶ You can assign 0 into a pointer:

int * ptr;
ptr = 0;

▶ The null pointer is the only integer literal that may be
assigned to a pointer. You may NOT assign arbitrary
numbers to pointers

COP 3363: Introduction to Programming in C++ Fall 2024 16/57

The null pointer

▶ You may NOT assign arbitrary numbers to pointers

int * p = 0; // OK assignment of null pointer to p
int * q;

q = 0; // okay. null pointer again.
int * z;
z = 900; // BAD! cannot assign other literals to

pointers!
double * dp;
dp = 1000; // BAD!

COP 3363: Introduction to Programming in C++ Fall 2024 17/57

The null pointer

▶ The null pointer is never a valid target, however. If you try to
dereference the null pointer, you WILL get a segmentation
fault.

▶ So why use it?

COP 3363: Introduction to Programming in C++ Fall 2024 18/57

The null pointer

▶ The null pointer is typically used as a placeholder to initialize
pointers until you are ready to use them (i.e. with valid
targets), so that their values are known.
▶ If a pointer’s value was completely unknown – random memory

garbage – you’d never know if it was safe to dereference
▶ Make sure your pointer is ALWAYS set to either a valid arget,

or to the null pointer, then you can test for it:

if (ptr != 0) // safe to dereference
cout << *ptr;

COP 3363: Introduction to Programming in C++ Fall 2024 19/57

Assigning Pointers of the same type

▶ It is also legal to assign one pointer to another, provided that
they are the same type:

int * ptr1, * ptr2; // two pointers of type
int ptr1 = ptr2; // can assign one to the other
// now they both point to the same place

COP 3363: Introduction to Programming in C++ Fall 2024 20/57

Assigning Pointers of the same type

▶ Although all pointers are addresses (and therefore represented
similarly in data storage), we want the type of the pointer to
indicate what is being pointed to. Therefore, C treats pointers
to different types AS different types themselves.

int * ip; // pointer to int
char * cp; // pointer to char
double * dp; // poitner to double

COP 3363: Introduction to Programming in C++ Fall 2024 21/57

Reinterpret Cast

▶ These three pointer variables (ip, dp, cp) are all considered to
have different types, so assignment between any of them is
illegal. The automatic type coercions that work on regular
numerical data types do not apply:

ip = dp; // ILLEGAL
dp = cp; // ILLEGAL
ip = cp; // ILLEGAL

COP 3363: Introduction to Programming in C++ Fall 2024 22/57

Reinterpret Cast

▶ As with other data types, you can always force a conversion
by performing an explicit cast operation. With pointers, you
would usually use reinterpret cast. Be careful that you really
intend this, however!

ip = reinterpret_cast<int* >(dp);

COP 3363: Introduction to Programming in C++ Fall 2024 23/57

The ”address of” operator

▶ Recall, the & unary operator, applied to a variable, gives its
address:

int x;
// the notation &x means "address of x"

▶ This is the best way to attach a pointer to an existing variable:

int * ptr; // a pointer
int num; // an integer
ptr = # // assign the address of num to ptr //

now ptr points to "num"!

COP 3363: Introduction to Programming in C++ Fall 2024 24/57

Pass by Address/Pointers

▶ We’ve seen that regular function parameters are pass-by-value
▶ A formal parameter of a function is a local variable that will

contain a copy of the argument value passed in
▶ Changes made to the local parameter variable do not affect

the original argument passed in

COP 3363: Introduction to Programming in C++ Fall 2024 25/57

Pass by Address/Pointers

▶ If a pointer type is used as a function parameter type, then an
actual address is being sent into the function instead
▶ In this case, you are not sending the function a data value

–instead, you are telling the function where to find a specific
piece of data

▶ Such a parameter would contain a copy of the address sent
inby the caller, but not a copy of the target data

▶ When addresses (pointers) are passed into functions, the
function could affect actual variables existing in the scope of
the caller

COP 3363: Introduction to Programming in C++ Fall 2024 26/57

Example 1

void addone(int a){
a = a + 1;
cout << &a << endl; // ???

}

int main() {
int x = 1;
int* pt = &x; // pt = 1234
addone(x);
cout << x << endl; // ???
cout << pt << endl; // ???

}

COP 3363: Introduction to Programming in C++ Fall 2024 27/57

Example 1

void addone(int a){
a = a + 1;
cout << &a << endl; // the address of a (a copy

of x)
}

int main() {
int x = 1;
int* pt = &x; // pt = 1234
addone(x);
cout << x << endl; // 1
cout << pt << endl; // 1234

}

COP 3363: Introduction to Programming in C++ Fall 2024 28/57

Example 2

void addone(int& a) {
a = a + 1;
cout << &a << endl; // ???

}

int main() {
int x = 1;
int* pt = &x; // pt = 1234
addone(x);
cout << x << endl; // ???
cout << pt << endl; // ???

}

COP 3363: Introduction to Programming in C++ Fall 2024 29/57

Example 2

void addone(int& a) {
a = a + 1;
cout << &a << endl; // 1234

}

int main() {
int x = 1;
int* pt = &x; // pt = 1234
addone(x);
cout << x << endl; // 2
cout << pt << endl; // 1234

}

COP 3363: Introduction to Programming in C++ Fall 2024 30/57

Example 3

void addone(int* a) {
*a = *a + 1;
cout << a << endl; // ???
cout << &a << endl; // ???

}

int main() {
int x = 1;
int* pt = &x; // pt = 1234
addone(x);
cout << x << endl; // ???
cout << pt << endl; // ???

}

COP 3363: Introduction to Programming in C++ Fall 2024 31/57

Example 3

void addone(int* a) {
*a = *a + 1;
cout << a << endl; // 1234
cout << &a << endl; // address of the pointer to a

}

int main() {
int x = 1;
int* pt = &x; // pt = 1234
addone(x);
cout << x << endl; // 2
cout << pt << endl; // 1234

}

COP 3363: Introduction to Programming in C++ Fall 2024 32/57

Reference vs. Pointers

Memory Representation

▶ Reference variable: A reference does not actually have a
distinct memory location from the variable it refers to. It’s
more of a compiler-level abstraction or alias. When a
reference is created, it is essentially an alternate name for the
memory location of the original variable. Thus, no additional
memory is allocated to store a reference.

▶ Pointer variable: A pointer, on the other hand, is a separate
entity in memory that holds the address of another variable.
This means it occupies its own space, typically 4 or 8 bytes
(depending on the system architecture, 32-bit or 64-bit).

COP 3363: Introduction to Programming in C++ Fall 2024 33/57

Reference vs. Pointers

Address Handling and Dereferencing

▶ Reference variable: At a low level, a reference is not directly
manipulated using the address of the variable. Therefore,
when the CPU accesses the value of a reference, it is the same
as accessing the original variable. There’s no need for an
explicit dereferencing operation.

▶ Pointer variable: A pointer stores the memory address of
another variable. The CPU needs to perform a dereferencing
operation (*ptr) to access the value stored at the address.
This involves fetching the address stored in the pointer, then
performing a memory lookup to get the actual value at that
address..

COP 3363: Introduction to Programming in C++ Fall 2024 34/57

Reference vs. Pointers

CPU Instructions and Operations

▶ Reference variable: Since references are resolved at
compile-time, there is no additional overhead during runtime
for dereferencing. The compiler directly generates code that
works with the underlying variable, meaning the operations
involving references are as efficient as using the original
variable itself.

▶ Pointer variable: The use of pointers involves additional
CPU instructions to load and dereference addresses. The CPU
has to first load the memory address stored in the pointer,
then access or modify the value at that address. This
introduces an extra level of indirection and potentially more
memory accesses.

COP 3363: Introduction to Programming in C++ Fall 2024 35/57

Reference vs. Pointers

Nullability and Safety

▶ Reference variable: At the assembly level, there is no null
reference concept. A reference always refers to a valid object.
Thus, the compiler assumes that references are never null,
making references safer from memory corruption or runtime
errors like dereferencing a null pointer.

▶ Pointer variable: Pointers, however, can be null (i.e., store a
memory address of 0x0), and dereferencing a null pointer leads
to undefined behavior, often causing a crash. The pointer’s
value must be checked at runtime to avoid null dereferences,
adding complexity and potential runtime overhead.

COP 3363: Introduction to Programming in C++ Fall 2024 36/57

Reference vs. Pointers

Low-Level Flexibility

▶ Reference variable: References provide a higher-level
abstraction and hide the complexities of memory
manipulation. However, because of this, they lack the
flexibility of pointers at a low level, especially in tasks
involving memory management or dynamic allocation.

▶ Pointer variable: Pointers are more flexible at a low level
because you can manipulate the memory address directly,
increment or decrement pointer values (e.g., in array
manipulation), and allocate or free memory manually (e.g.,
new and delete in C++).

COP 3363: Introduction to Programming in C++ Fall 2024 37/57

Pointers and Arrays:

▶ With a regular array declaration, you get a pointer for free.
The name of the array acts as a pointer to the first element of
the array.

int list[10]; // the variable list is a pointer//
to the first integer in the array

int * p; // p is a pointer. same type as list.
p = list; // legal assignment. Both pointers to

ints.

COP 3363: Introduction to Programming in C++ Fall 2024 38/57

Pointers and Arrays:

▶ In the above code, the address stored in list has been assigned
to p. Now both pointers point to the first element of the
array. Now, we could actually use p as the name of the array!

list[3] = 10;
p[4] = 5;
cout << list[6];
cout << p[6];

COP 3363: Introduction to Programming in C++ Fall 2024 39/57

Pointer Arithmetic

▶ Another useful feature of pointers is pointer arithmetic.

▶ When you add to a pointer, you do not add the literalnumber.
You add that number of units, where a unit is the type being
pointed to.

▶ Suppose ptr is a pointer to an integer, and ptr stores
theaddress 1000. Then the expression (ptr + 5) does not give
1005 (1000+5).

▶ Instead, the pointer is moved 5 integers (ptr + (5 *
size-of-an-int)). So, if we have 4-byte integers, (ptr+5) is
1020 (1000 + 5*4).

COP 3363: Introduction to Programming in C++ Fall 2024 40/57

Another Example

void addone(int* a) {
a = a + 1;
cout << a << endl; // ???
cout << &a << endl; // ???
cout << *a << endl; // ???

}

int main() {
int x = 1;
int* pt = &x; // pt = 1234
addone(x);
cout << x << endl; // ???
cout << pt << endl; // ???

}

COP 3363: Introduction to Programming in C++ Fall 2024 41/57

Another Example

void addone(int* a) {
a = a + 1;
cout << a << endl; // 1238
cout << &a << endl; // address of a
cout << *a << endl; // dangerous

}

int main() {
int x = 1;
int* pt = &x; // pt = 1234
addone(x);
cout << x << endl; // 1
cout << pt << endl; // 1234

}

COP 3363: Introduction to Programming in C++ Fall 2024 42/57

Pointer Arithmetic

▶ In the above array example, we referred to an array item with
p[6]. We could also say *(p+6).

▶ For instance, p + 6 in the above example means to move the
pointer forward 6 integer addresses. Then we can dereference
it to get the data *(p + 6).

▶ Most often, pointer arithmetic is used with arrays.

COP 3363: Introduction to Programming in C++ Fall 2024 43/57

Pointer Arithmetic

What pointer arithmetic operations are allowed?

▶ A pointer can be incremented (++) or decremented (–)

▶ An integer may be added to a pointer (+ or +=)

▶ An integer may be subtracted from a pointer (- or -=)

▶ One pointer may be subtracted from another

COP 3363: Introduction to Programming in C++ Fall 2024 44/57

Pass By Address with arrays:

▶ The fact that an array’s name is a pointer allows easy passing
of arrays in and out of functions. When we pass the array in
by its name, we are passing the address of the first array
element. So, the expected parameter is a pointer. Example:

// This function receives two integer pointers, //
which can be names of integer arrays.

int Example1(int * p, int * q);

COP 3363: Introduction to Programming in C++ Fall 2024 45/57

Pass By Address with arrays:

▶ When an array is passed into a function (by its name), any
changes made to the array elements do affect the original
array, since only the array address is copied (not the array
elements themselves).

void Swap(int * list, int a, int b)
{

int temp = list[a];
list[a] = list[b];
list[b] = temp;

}

COP 3363: Introduction to Programming in C++ Fall 2024 46/57

Pass By Address with arrays:

▶ This Swap function allows an array to be passed in by its
name only. The pointer is copied but not the entire array. So,
when we swap the array elements, the changes are done on
the original array. Here is an example of the call from outside
the function:

int numList[5] = 2, 4, 6, 8, 10;
Swap(numList, 1, 4); // swaps items 1 and 4

▶ Note that the Swap function prototype could also be written
like this:

void Swap(int list[], int a, int b);

COP 3363: Introduction to Programming in C++ Fall 2024 47/57

Pass By Address with arrays:

▶ The array notation in the prototype does not change
anything. An array passed into a function is always passed by
address, since the array’s name IS a variable that stores its
address (i.e. a pointer).

COP 3363: Introduction to Programming in C++ Fall 2024 48/57

Pass By Address with arrays:

Pass-by-address can be done in returns as well – we can return the
address of an array.

int * ChooseList(int * list1, int * list2)
{ // returns a copy of the address of the array

if (list1[0] < list2[0])
return list1;

else
return list2;

}

And an example usage of this function:

int list1[5] = {1,2,3,4,5};
int list2[3] = {3,5,7};
int * p;
p = ChooseList(numbers, numList);

COP 3363: Introduction to Programming in C++ Fall 2024 49/57

Using const with pass-by-address

▶ The keyword const can be used on pointer parameters, like
wedo with references.

▶ It is used for a similar situation – it allows parameter passing
without copying anything but an address, but protects against
changing the data (for functions that should not change the
original)

▶ The format:

const typeName * v

COP 3363: Introduction to Programming in C++ Fall 2024 50/57

Using const with pass-by-address

▶ This establishes v as a pointer to an object that cannot be
changed through the pointer v.

▶ Note: This does not make v a constant! The pointer v can
bechanged. But, the target of v cannot be changed (through
the pointer v).

▶ Example:

int Function1(const int * list); // the target
of //list can’t be changed in the function

COP 3363: Introduction to Programming in C++ Fall 2024 51/57

Using const with pass-by-address

The pointer can be made constant, too. Here are the different
combinations:

1. Non-constant pointer to non-constant data

int * ptr;

2. Non-constant pointer to constant data

const int * ptr;

COP 3363: Introduction to Programming in C++ Fall 2024 52/57

Using const with pass-by-address

The pointer can be made constant, too. Here are the different
combinations:

1. Constant pointer to non-constant data

int x = 5;
int * const ptr = &x; // must be initialized

here

An array name is this type of pointer - a constant pointer (to
non-constant data).

2. Constant pointer to constant data

int x = 5;
const int * const ptr = & x;

COP 3363: Introduction to Programming in C++ Fall 2024 53/57

Using const with pass-by-address

The pointer can be made constant, too. Here are the different
combinations:

1. Constant pointer to non-constant data

int x = 5;
int * const ptr = &x; // must be initialized

here

An array name is this type of pointer - a constant pointer (to
non-constant data).

2. Constant pointer to constant data

int x = 5;
const int * const ptr = & x;

COP 3363: Introduction to Programming in C++ Fall 2024 54/57

const pointers and C-style strings

▶ We’ve seen how to declare a character array and initialize with
a string:

char name[25] = "Spongebob Squarepants";

▶ Note that this declaration creates an array called name (ofsize
25), which can be modified.

▶ Another way to create a varible name for a string is to use
just a pointer:

char* greeting = "Hello";

COP 3363: Introduction to Programming in C++ Fall 2024 55/57

const pointers and C-style strings

▶ However, this does NOT create an array in memory that can
be modified. Instead, this attaches a pointer to a fixed string,
which is typically stored in a ”read only” segment of memory
(cannot be changed).

▶ So it’s best to use const on this form of declaration:

const char* greeting = "Hello"; // better

COP 3363: Introduction to Programming in C++ Fall 2024 56/57

Exercise: Subarray Sum

Goal: Write a program to find a continuous/consecutive subarray
in an unsorted array that adds up to a given sum S.

// Given: {23, 17, 11, 2, 29, 40, 41, 39, 26, 10,
42, 43};

▶ Return the starting and ending indexes of a subarray whose
sum is equal to S

▶ If not found, print out not found such subarrays

Enter the target sum: 31
Subarray found between indexes 3 and 4

Enter the target sum: 71
Subarray found between indexes 3 and 5

COP 3363: Introduction to Programming in C++ Fall 2024 57/57

	title

