
Logistics

▶ Homewroks 2 due tonight @ 11:59pm

▶ Homeworks 3 released, due at Oct 21st 11:59pm

COP 3363: Introduction to Programming in C++ 1/12



Logistics

Midterm Exam: Next Monday, Oct 14th 2024

▶ 4:50pm - 6:05pm @ MCH 201

▶ 10 multiple-choice questions (20 pts)

▶ 10 short answer questions (30 pts)

▶ 3 programming questions (50 pts)

▶ Paper exam, closed-book, no cheat sheet, no electronic
devices (phone, tablet, laptop, calculator etc.)

▶ Covers from Introduction to C++ to Advanced Fucntions
(include unix we have learned so far)

COP 3363: Introduction to Programming in C++ 2/12



Lecture 12
Advanced Functions - Recursion

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

COP 3363: Introduction to Programming in C++ Fall 2024 3/12

mailto:shiboli@cs.fsu.edu


What is Recursion

▶ A recursive function is a function that calls itself in order to
solve a smaller instance of the same problem.

▶ A problem is divided into smaller sub-problems until it
reaches a base case, which is directly solvable.

COP 3363: Introduction to Programming in C++ Fall 2024 4/12



Components of a Recursive Function

▶ Base Case: The condition under which the recursion ends. It
prevents infinite recursion.

▶ Recursive Case: The part of the function that calls itself
with a modified parameter, moving the problem closer to the
base case.

function recursiveFunction(parameters) {
if (base case condition)

return base_case_value;
else

return recursiveFunction(modified_parameters);
}

COP 3363: Introduction to Programming in C++ Fall 2024 5/12



Why Recursions

▶ Simpler Code for Certain Problems: Recursive solutions
can be more intuitive and shorter for problems like factorials,
Fibonacci sequence, and tree traversals.

▶ Divide and Conquer Approach: Recursion naturally fits
problems that can be divided into similar sub-problems (e.g.,
merge sort, quick sort).

COP 3363: Introduction to Programming in C++ Fall 2024 6/12



Example

▶ Calculate the factorial of a number n.

▶ n! = n × (n − 1)!, where 0! = 1

int factorial(int n) { // recursion
if (n == 0) // Base case

return 1;
else

return n * factorial(n - 1); // Recursive case
}

int factorial(int n) { // iteration
int result = 1;
for (int i = 1; i <= n; ++i) {

result *= i;
}
return result;

}

COP 3363: Introduction to Programming in C++ Fall 2024 7/12



Pros and Cons of Recursion

Pros:

▶ Simplicity and readability for problems that fit naturally into
recursive patterns.

▶ Useful for tasks that involve tree structures or backtracking.

COP 3363: Introduction to Programming in C++ Fall 2024 8/12



Pros and Cons of Recursion

Cons:

▶ Higher memory usage due to call stack overhead.

▶ Can lead to stack overflow if the recursion depth is too high
(possible exponential growth).

▶ Slower performance for problems with many overlapping
subproblems

COP 3363: Introduction to Programming in C++ Fall 2024 9/12



Pros and Cons of Recursion

Cons:

▶ Higher memory usage due to call stack overhead.

▶ Can lead to stack overflow if the recursion depth is too high
(possible exponential growth).

▶ Slower performance for problems with many overlapping
subproblems

COP 3363: Introduction to Programming in C++ Fall 2024 10/12



Avoiding Pitfalls

▶ Base Case Issues: Ensure a proper base case is defined to
prevent infinite recursion.

▶ Performance Considerations: Consider using dynamic
programming or memoization

COP 3363: Introduction to Programming in C++ Fall 2024 11/12



Real-world Applications of Recursion

▶ Sorting Algorithms (Quick Sort, Merge Sort)

▶ Tree Traversal (Pre-order, In-order, Post-order)

▶ Graph Traversal (Depth-First Search)

▶ Solving Puzzles (e.g., Towers of Hanoi)

COP 3363: Introduction to Programming in C++ Fall 2024 12/12


	title

