
Lecture 11
Advanced Functions

Shibo Li
shiboli@cs.fsu.edu

Department of Computer Science
Florida State University

The slides are mainly from Sharanya Jayaraman

COP 3363: Introduction to Programming in C++ Fall 2024 1/33

mailto:shiboli@cs.fsu.edu


Function Overloading

The term function overloading refers to the way C++ allows
more than one function in the same scope to share the same
name—as long as they have different parameter lists

▶ The rationale is that the compiler must be able to look at any
function call and decide exactly which function is being
invoked

▶ Overloading allows intuitive function names to be used
inmultiple contexts

COP 3363: Introduction to Programming in C++ Fall 2024 2/33



Function Overloading

▶ The parameter list can differ in number of parameters, ortypes
of parameters, or both

▶ Name mangling/Name Decoration. The basic idea is that
the compiler encodes the function’s name along with its
parameter types into a unique name, making it distinct from
other overloaded functions.

int Process(double num); // function 1
int Process(char letter); // function 2
int Process(double num, int position); // function 3

COP 3363: Introduction to Programming in C++ Fall 2024 3/33



Function Overloading

▶ The parameter list can differ in number of parameters, ortypes
of parameters, or both

▶ Name mangling/Name Decoration. The basic idea is that
the compiler encodes the function’s name along with its
parameter types into a unique name, making it distinct from
other overloaded functions.

int Process(double num); // function 1
int Process(char letter); // function 2
int Process(double num, int position); // function 3

COP 3363: Introduction to Programming in C++ Fall 2024 4/33



Function Overloading

Sample calls, based on the above declarations

int x;
float y = 12.34;

x = Process(3.45, 12); // invokes function 3
x = Process(’f’); // invokes function 2
x = Process(y); // invokes function 1
//(automatic type conversion applies)

COP 3363: Introduction to Programming in C++ Fall 2024 5/33



Function Polymorphism

Function Overloading ̸= Function Overidding
▶ multiple functions with

similar functionality
▶ Functions are in the

same class/scope
▶ params MUST differ
▶ compile-time
▶ handle different types or

amounts of data

▶ a specific implementation in a
subclass

▶ Functions are in base and
derived classes

▶ params Must be identical
▶ Runtime
▶ To modify or extend base class

behavior

COP 3363: Introduction to Programming in C++ Fall 2024 6/33



Default Parameters

Allows a function to have default values for parameters

▶ Specify default values in function declaration.
▶ Rules

▶ Default values must be provided from right to left.
▶ Once a parameter has a default value, all subsequent

parameters must have defaults.

void display(int x, int y = 10, int z = 20) {
cout << x << " " << y << " " << z << endl;

}

display(1); // Output: 1 10 20
display(1, 2); // Output: 1 2 20

COP 3363: Introduction to Programming in C++ Fall 2024 7/33



Ambiguities of Function Overloading

Even with legally overloaded functions, it’s possible to make
ambiguous function calls, largely due to

▶ Automatic type conversion

▶ default paramters

COP 3363: Introduction to Programming in C++ Fall 2024 8/33



Avoiding Ambiguity

Example 0:

// Overloaded functions
void func(int x) {

cout << "func(int) called." << endl;
}

void func(double x) {
cout << "func(double) called." << endl;

}

int main() {
func(0);
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 9/33



Avoiding Ambiguity

Example 0:

// Overloaded functions
void func(int x) {

cout << "func(int) called." << endl;
}

void func(double x) {
cout << "func(double) called." << endl;

}

int main() {
func(10.0);
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 10/33



Avoiding Ambiguity

Example 1:

// Overloaded functions
void func(int x) {

cout << "func(int) called." << endl;
}

void func(double x) {
cout << "func(double) called." << endl;

}

int main() {
func(’A’);
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 11/33



Avoiding Ambiguity

Example 1: Ambiguity due to type promotion

// Overloaded functions
void func(int x) {

cout << "func(int) called." << endl;
}

void func(double x) {
cout << "func(double) called." << endl;

}

int main() {
func(’A’); // No errors, first one will be called.
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 12/33



Avoiding Ambiguity

Example 2:

// Overloaded functions
void func(int x) {

cout << "func(int) called." << endl;
}

void func(float x) {
cout << "func(float) called." << endl;

}

int main() {
func(10.5);
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 13/33



Avoiding Ambiguity

Example 2: Ambiguity due to type conversion

// Overloaded functions
void func(int x) {

cout << "func(int) called." << endl;
}

void func(float x) {
cout << "func(float) called." << endl;

}

int main() {
func(10.5); // Error: Ambiguous call
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 14/33



Avoiding Ambiguity

Example 3:

void func(long x) {
cout << "func(long) called." << endl;

}

void func(double x) {
cout << "func(double) called." << endl;

}

int main() {
func(100);
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 15/33



Avoiding Ambiguity

Example 3: Ambiguity due to type promotion

void func(long x) {
cout << "func(long) called." << endl;

}

void func(double x) {
cout << "func(double) called." << endl;

}

int main() {
func(100); // Error: Ambiguous call
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 16/33



Avoiding Ambiguity

Example 4: due to default parameters

// Overloaded functions
void func(int x, float y = 3.14) {

cout << "func(int, float) called" << endl;
}

void func(int x) {
cout << "func(int) called" << endl;

}

int main() {
func(5);
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 17/33



Avoiding Ambiguity

Example 4:

// Overloaded functions with default parameters
void func(int x, float y = 3.14) {

cout << "func(int, float) called" << endl;
}

void func(int x) {
cout << "func(int) called" << endl;

}

int main() {
func(5); // Ambiguous call: which overload should be

called?
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 18/33



Avoiding Ambiguity

Example 5: Ambiguity Due to Promotion and Conversion of Mixed
Data Types

// Overloaded functions with different parameter types
void func(float x, double y) {

cout << "func(float, double) called." << endl;
}

void func(double x, float y) {
cout << "func(double, float) called." << endl;

}

int main() {
func(1, 2); // Error: Ambiguous call
return 0;

}

COP 3363: Introduction to Programming in C++ Fall 2024 19/33



General Rule to Avoid Ambiguity

To avoid ambiguity:

▶ Use function overloading with clearly distinct parameter
types that do not require implicit type conversions.

▶ Be cautious when using default parameters in conjunction
with overloading.

▶ Use type casting in the function call to explicitly specify
which overloaded function you want to invoke:

func(static_cast<int>(10.5)); // Calls func(int)
func(static_cast<float>(100)); // Calls func(float)

COP 3363: Introduction to Programming in C++ Fall 2024 20/33



Reference Variables

▶ A reference is an alias(nickname) for another variable. It is
created using the & symbol.
▶ Must be initialized at the time of declaration.

int x = 10;
int &ref = x; // ref is a reference to x
// x, ref are both referring to the SAME

storage location
cout << x << endl;
cout << ref << endl;

10
10

COP 3363: Introduction to Programming in C++ Fall 2024 21/33



Reference Variables

▶ No separate memory is allocated for references.

int x = 10;
int &ref = x; // ref is a reference to x
x += 1;
cout << x << endl;
cout << ref << endl;

11
11

COP 3363: Introduction to Programming in C++ Fall 2024 22/33



Reference Variables

▶ No separate memory is allocated for references.

int x = 10;
int &ref = x; // ref is a reference to x
x += 1;
cout << &x << endl; // When & is not used

after a data type, it means address-of
operator

cout << &ref << endl;

0x7ffc37b3bd14
0x7ffc37b3bd14

COP 3363: Introduction to Programming in C++ Fall 2024 23/33



Reference Variables

▶ Note: The notation can become confusing when different
sources place the & differently. The following three
declarations are equivalent:

int &r = n;
int& r = n;
int & r = n;

The spacing between the “int” and the “r” is irrelevant. All
three of these declare r as a reference variable that refers to n.

COP 3363: Introduction to Programming in C++ Fall 2024 24/33



Why Reference?

int x = 10;
int &ref = x; // ref is a reference to x

▶ While the above code example shows what a reference
variable is, you will not likely use it this way!

▶ In this example, the regular variable and the reference are in
the same scope, so it seems silly. (”Why do I need to call it r
when I can call it x ?”)

▶ So when are references useful?

COP 3363: Introduction to Programming in C++ Fall 2024 25/33



Why Reference?

▶ Avoids copying large structures
▶ Passing function parameters by reference to avoid unnecessary

copies.

▶ Allows modification of variables passed to a function.
▶ Two variables are in different scopes (this means functions)!

COP 3363: Introduction to Programming in C++ Fall 2024 26/33



Pass by Value

▶ Recall that the variables in the formal parameter list are
always local variables of a function

▶ This is known as Pass By Value - function parameters receive
copies of the data sent in.

int addOne(int a) {
return a+=1;

}

int main() {
int a = 1;
cout << addOne(a) << endl; // ?
cout << a << endl; // ?

}

COP 3363: Introduction to Programming in C++ Fall 2024 27/33



Pass by Value

▶ Recall that the variables in the formal parameter list are
always local variables of a function

▶ This is known as Pass By Value - function parameters receive
copies of the data sent in.

int addOne(int a) {
return a+=1; // will not affect the caller

}

int main() {
int a = 1;
cout << addOne(a) << endl; // 2
cout << a << endl; // 1

}

COP 3363: Introduction to Programming in C++ Fall 2024 28/33



Pass by Reference

int addOne(int &a) {
return a+=1;

}

int main() {
int a = 1;
cout << addOne(a) << endl; // ?
cout << a << endl; // ?

}

COP 3363: Introduction to Programming in C++ Fall 2024 29/33



Pass by Reference

int addOne(int &a) {
return a+=1; // DO change the caller!

}

int main() {
int a = 1;
cout << addOne(a) << endl; // 2
cout << a << endl; // 2

}

▶ When reference variables are used as formal parameters, this
is known as Pass By Reference

▶ Parameters passed by are still local to the function, but they
are reference variables (i.e., oringal variables)

▶ int& func() return reference also possible

COP 3363: Introduction to Programming in C++ Fall 2024 30/33



Comparing: Value vs. Reference

▶ Pass By Value
▶ The local parameters are copies of the original

argumentspassed in
▶ Changes made in the function to these variables do not affect

originals

▶ Pass By Reference
▶ The local parameters are references to the storage locations

ofthe original arguments passed in.
▶ Changes to these variables in the function will affect the

originals
▶ No copy is made, so overhead of copying (time, storage) is

saved

COP 3363: Introduction to Programming in C++ Fall 2024 31/33



const Reference Parameters

▶ The keyword const can be used on reference parameters.

void func(const int& x)

▶ This will prevent x from being changed in the function body

▶ This would be used to avoid the overhead of making a
copy,but still prevent the data from being changed

COP 3363: Introduction to Programming in C++ Fall 2024 32/33



Exercise: Estimate π through harmonic series

π

4 =
∞∑

k=1

(−1)k+1

2k − 1 = 1
1 − 1

3 + 1
5 − 1

7 + 1
9 − · · ·

▶ Prompt to the user for entering k.

▶ You should validate the user’s inputs to ensure n ≥ 1. You
prompt the user indefinitely until the user enters valid inputs.

▶ Print out the approximated π with order k.

Enter the order you want to approximate PI: 0
ERROR: invalid n! try again!
Enter the order you want to approximate PI: 10
Approximate PI with order of 10 is: 3.04184

Enter the order you want to approximate PI: 10000
Approximate PI with order of 10000 is: 3.14149

COP 3363: Introduction to Programming in C++ Fall 2024 33/33


	title

